
3 Medium Questions

1. (30 points) The speed of light

The year is 1671 and you are astronomer Ole Rømer, measuring the period of Io’s orbit around Jupiter
by timing the passages of Io into or out of Jupiter’s shadow.

In December of 1671, Jupiter is at its first quadrature and you observe eclipses at the following times:

• December 18 at 06:17:48

• December 20 at 00:46:09

• December 21 at 19:14:30

In June of 1672, Jupiter is at its second quadrature and you observe eclipses at the following times:

• June 19 at 08:42:50

• June 21 at 03:11:30

• June 22 at 21:40:10

(a) (2 points) What is the interval between eclipses of Io as measured in December 1671, and what is
it in June 1672?

(b) (7 points) These orbital periods are slightly different. Rømer hypothesized that this is evidence
that light has a finite speed. Explain why he thought this.

(c) (15 points) Calculate the speed of light from these observations, and what you know about the
orbits of Earth and Jupiter. Explain any simplifying assumptions that you make. How close is this
speed of light to the correct value? (Hint: at second quadrature Earth is moving directly away from
Jupiter, and at first quadrature Earth is moving directly towards Jupiter.)

(d) (6 points) In 1672, Rømer did not have an accurate measurement of the distance from the Earth
to the Sun. Write the speed of light as he would have had to write it, in terms of the unknown
Earth-Sun distance a.

(Be careful: Rømer also did not know the gravitational constant or the mass of the sun!)

Solution:

(a) In December 1671, the observed interval between successive eclipses is 42 hours, 28 minutes,
and 21 seconds.

In June 1672, the observed interval between successive eclipses is 42 hours, 28 minutes, and
40 seconds.

Notice that the periods differ by 19 seconds.

(b) Since light has a finite speed, we don’t observe the eclipses of Io until some time after they
actually happen: there is a light delay time. When the distance between Jupiter and Earth
is decreasing, the light delay time should be decreasing with each eclipse, so the time be-
tween eclipses seems to be shorter. Similarly, when the distance between Jupiter and Earth is
increasing, the time between eclipses appears to be longer.

This is very similar to the modern concept of the Doppler effect, though Rømer didn’t call it
that at the time.

(c) Let the true orbital period be p, and the radial velocity of Jupiter relative to Earth be v. If the
speed of light is c, then the delay time between successive orbits will change by pv

c . Therefore
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the observed orbital period is longer than the true orbital period by ∆p “
pv
c . The speed of

light is thus

c “
pv

∆p

Jupiter’s orbital velocity is somewhat slower than Earth’s, and it is also almost entirely tan-
gential rather than radial. So we make the simplifying assumption that the radial velocity
of Jupiter relative to Earth at first and second quadrature is just the Earth’s orbital velocity
(towards Earth at first quadrature and away from Earth at second quadrature.) So v is just
the Earth’s orbital velocity, which from Kepler’s third law is

v “

c

GMsun

a
“ 30 km{s

The true orbital period of Io is roughly the average of the two measured periods, so p “

42:28:30.5, and ∆p “ 9.5 sec. Plugging in these values to the above expression for the speed
of light gives

c “ 4.8 ¨ 108 m{s

Today we know that this is about 60% larger than the true value, which is not bad given all
the approximations that were made.

(d) We could try to carry out the same derivation as in the previous part, but leave a as an
unknown constant. This gives

c “
p

?
GMsun

∆p
a´1{2

But this expression depends on G and Msun, which Rømer would not have known at the time.
Rømer did not know any of a, G and Msun individually, but he did know that the Earth’s
orbital period

T “
2πa3{2

?
GMsun

is one year.

So we can instead write

v “
2πa

1 year

c “
2πp

p1 yearq∆p
a “

a

5m12s

This is equivalent to saying that it takes 5 minutes and 12 seconds for light to travel from
the Sun to the Earth. It can be argued that Rømer was not really measuring the speed of
light, but instead just the light travel time from the Earth to the Sun. (The first accurate
determination of the Earth-Sun distance was made a year later by Cassini.)

2. (30 points) A meteorite that is radially approaching the Earth collides with a space station that revolves
around the Earth in a circular orbit with radius R. For all parts of the question, express your results in
terms of the mass M of the Earth, the gravitational constant G, the mass m1 of the meteorite, and the
mass m2 of the space station.

(a) Assume that, after the impact, the meteorite and the space station form a conglomerate that moves
in a closed orbit which approaches the center of the Earth at a minimum distance R{2. State what
the shape of the orbit of the conglomerate is and determine:
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(i) the speed of the meteorite just before the collision,

(ii) the minimum and maximum speeds of the conglomerate,

(iii) the maximum distance of the conglomerate from the center of the Earth.

Determine the condition that m1 and m2 must obey so that the aforementioned scenario is possible.

(b) Determine the minimum speed that the meteorite should have just before the collision so that the
conglomerate moves in an open orbit after the impact. For this minimum value of the speed of the
meteorite, state what the shape of the orbit of the conglomerate would be and determine

(i) the maximum speed of the conglomerate,

(ii) its minimum distance from the center of the Earth,

(iii) the angle traversed by the orbital radius from the moment of the collision until the moment
when the conglomerate approaches the center of the Earth to minimum distance.

Solution:

(a) The orbit of the conglomerate after the collision will be an ellipse.
Conservation of momentum implies that the radial and tangential components (vr and vt,
respectively) of the speed of the conglomerate are:

vr “
m1

m1 ` m2
v

and

vt “
m2

m1 ` m2

c

GM

R
.

Here, v is the speed of the meteorite prior to the collision.
Conservation of angular momentum of the conglomerate during its orbital motion implies

m2

m1 ` m2

c

GM

R
R “ vmax

R

2
.

Therefore, we deduce that

vmax “
2m2

m1 ` m2

c

GM

R
.

Finally, conservation of mechanical energy per unit mass of the conglomerate yields

1

2
v2max ´

GM

R{2
“

1

2
pv2r ` v2t q ´

GM

R
.

Combining all previous equations, we find

´ 2m2

m1 ` m2

¯2GM

R
´

4GM

R
“

´ m1

m1 ` m2

¯2

v2 `

´ m2

m1 ` m2

¯2GM

R
´

2GM

R
,

which immediately yields

v “

a

3m2
2 ´ 2pm1 ` m2q2

m1

c

GM

R
,

provided that

?
3m2 ą

?
2pm1 ` m2q ô m1 ă

´

c

3

2
´ 1

¯

m2 .
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Now, one can find the semi-major axis of the orbit of the conglomerate:

1

a
“

2

rmin
´

v2max

GM
“

4

R

´

1 ´
m2

2

pm1 ` m2q2

¯

ô a “
R

4

pm1 ` m2q2

pm1 ` m2q2 ´ m2
2

.

Moreover, if we denote the eccentricity of the orbit by e, we find

ap1 ´ eq “
R

2
ô ae “ a ´

R

2
.

It follows that

rmax “ ap1 ` eq “ 2a ´
R

2
ô rmax “

R

2

m2
2

pm1 ` m2q2 ´ m2
2

.

Conservation of angular momentum immediately yields

vmin “ vmax
rmin

rmax
ô vmin “

2m1pm1 ` 2m2q

m2pm1 ` m2q

c

GM

R
.

(b) The orbit of the conglomerate will have the shape of a parabola. This scenario will occur
when

v2r ` v2t “
2GM

R
ô v “

a

2pm1 ` m2q2 ´ m2
2

m1

c

GM

R
.

Conservation of mechanical energy gives

v2max “
2GM

rmin
,

while conservation of angular momentum implies

vmaxrmin “
m2

m1 ` m2

c

GM

R
R.

Therefore,

vmax “
2pm1 ` m2q

m2

c

GM

R

and

rmin “
m2

2

2pm1 ` m2q2
R.

From the equation of a parabola in polar coordinates,

r “
2rmin

1 ` cos θ
,

one can find

1 ` cos θ

2
“ cos2

θ

2
“

rmin

r
ô θ “ 2 arccos

c

rmin

R
“ 2 arccos

m2
?
2pm1 ` m2q

.
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