
3 Medium Questions

1. (20 points) To measure the time accurately outside the Earth, the engineers build a special clock,
with the design as follows: there is a source of light that sends light particles (photons) straight to the
reflector that is located at the distance d away from the source. The reflector sends the photons back to
their starting point, where there is a detector. This can measure the time accurately, because the speed
of light c is constant everywhere. Then a group of engineers built a spaceship with this special clock
inside. This spaceship with a clock started to move really fast at the speed u. While the observer in the
spaceship reported no issues with the clock inside the spaceship, the observer on the Earth has noticed
that the clock is functioning differently in a fast moving spaceship than it is on Earth.

(a) Given that the clock is at rest, what is the total traveling time (∆tE) of a photon from its source
back to the detector?

(b) What is the total distance traveled by a photon dγ from the source back to the detector on the
spaceship moving at the speed u away from the Earth? (Here, we denote that the total traveling
time of the photon as ∆tS)

(c) What is the total time ∆tS of a photon as it travels from the source to the detector on the moving
spaceship? Answer in terms of d, c, and β “ v

c .

(d) If we relate ∆tE (non-moving frame) to ∆tS (moving frame), as follows: ∆tS “ γ∆tE , what does
γ equal to? What is significant about the range of γ?

(e) So far, we have only analyzed the motion on the perspective of an observer on the Earth. From the
perspective of an observer on the moving spaceship, how do the time on the spaceship ∆tS

1 and
the time on the Earth ∆tE

1 relate to each other?

(f) What can we conclude about the relative passing on time on two different frames that are relatively
in motion to one another?

Solution:

(a) ∆tE “
2d
c .
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(b) While the photon travels from the source to the reflector, the spaceship moves by u ¨ ∆tS
2 . The

distance from the source to the reflector can be then obtained by Pythagorean theorem.

dS
2
“

d

d2 ` pu ¨
∆tS

2
q

2

. Therefore,

dS “ 2

d

d2 ` pu ¨
∆tS

2
q

2

.

(c) The speed of light c is constant everywhere. Therefore, the distance traveled by light during
∆tS is c ¨∆tS .

From the last section,

2

d

d2 ` pu ¨
∆tS

2
q

2

“ c ¨∆tS .

4d2 ` u2∆tS
2
“ ∆tS

2
¨ c2.

∆tS
2
pc2 ´ u2q “ 4d2.

∆tS “
2d

?
c2 ´ u2

“
2d

c
b

1´ v2

c2

,

which equals to
2d

c
¨

1
b

1´ p vc q
2
,

or
2d

c
¨

1
a

1´ β2
.

(d)

γ “
1

a

1´ β2
.

Since no other speed can exceed the speed of light c, β is always less than 1. Therefore γ is
always greater than 1.

(e)
γ∆tS

1
“ ∆tE

1.

Time moves slower on the Earth, because by relativity, the “moving spaceship” observer thinks
that the Earth is flying away with a speed u.

(f) Time moves slower in a moving frame when observed from a frame at rest.

2. (30 points) You want to send a rocket with an instrument to analyze the atmosphere of Jupiter. In
order to get there, you decide to use a Hohmann transfer orbit. rE “ 1 AU and rJ “ 5 AU represent
the radii of Earth’s and Jupiter’s circular orbits around the Sun, respectively. m, ME , MJ , and MS

represent the masses of your rocket, Earth, Jupiter, and Sun, respectively. Ignore planetary gravitational
influences. You may use any other variables you would like if you clearly define them first. Refer to the
figures at the end of the question. Show your work for all derivations.

(a) Explain which two (relevant) physical quantities are conserved during this transfer orbit. Write
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down their statements mathematically.

(b) How long will it take to reach Jupiter?

(c) Halfway through its path to Jupiter, an unrealistic comet passes right next to your rocket and its
icy tail freezes your rocket fuel. What is the maximum amount of time that you can afford to
pass until you need the fuel to be once again unfrozen?

(d) Knowing that this comet will come in the way, your colleague suggests a bi-elliptic transfer orbit
instead, with a peak distance of 12rE . Write equations describing how long it will now take to
reach Jupiter. Will this solution always avoid the comet?

Now that you’ve compared the orbital times, you want to try and calculate the difference in effi-
ciency.

(e) Derive the δv for each orbital transition in the Hohmann transfer, and sum them to find the total
δv.

(f) Derive the δv for each orbital transition in the Bi-elliptic transfer, and sum them to find the total
δv.

(g) Factoring in all your previous results, which transfer would you like to use? Why?

Figure 1: Hohmann Transfer
Figure 2: Bi-elliptic Transfer

Solution:

(a) The relevant preserved quantities are energy and angular momentum.

Preservation of angular momentum is given by the following: L “ mvErE “ mvJrJ where vE
represents the rocket velocity at the Earth and vJ at Jupiter. More generally, L “ mv1r1 “ mv2r2.

Preservation of energy is given by the following: ETOT “
mv2E

2 ´ GmMS

rE
“

mv2J
2 ´ GmMS

rJ
. More

generally, ETOT “
mv21

2 ´ GmMS

r1
“

mv22
2 ´ GmMS

r2
.

(b) This can be calculated by first specifying the parameters of the rocket’s elliptical orbit, and then
using Kepler’s third law.

Key: use Kepler’s third law. The semi-major axis is the average of the minimum and maximum
distances from the sun. a “ rE`rJ

2 . If this is specified in AU, we can use P 2 “ a3 where P is in

years. Thus, P “
`

rE`rJ
2

˘
3
2 . However, we only want to take half of this orbital period, since we are

stopping at Jupiter rather than coming all the way back to Earth’s orbital radius. Thus, we simply
take half of this value:

T “
1

2

ˆ

rE ` rJ
2

˙
3
2

.
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(c) You can take an unlimited amount of time to wait for the fuel to unfreeze. This is because we are
ignoring gravitational effects from planets, and thus the rocket will constantly stay in the elliptical
orbit with Jupiter’s orbit at apoapsis and Earth’s orbit at periapsis. Whenever the fuel unfreezes,
we would wait from that point on for the rocket to reach apoapsis before firing engines for δv2.

(d) Remember that a bi-elliptic transfer has one free parameter: the joint apoapsis X AU from
the sun, or the max distance from the sun the rocket will reach. Thus, we immediately know this
solution will not always avoid the comet. If we set the joint apoapsis to be just barely greater than
Jupiter’s orbit, the first elliptical orbit will be almost identical to the Hohmann transfer orbit.

Using similar logic from part b, the time to reach Jupiter would be T “ 1
2a

3
2
1 `

1
2a

3
2
2 .

a1 “
12rE ` rE

2
“ 6.5rE

a2 “
12rE ` rJ

2
“ 6rE `

rJ
2

(e) Key: use the vis-viva equation.

Vis-viva equation:

v2 “ GM

ˆ

2

r
´

1

a

˙

Circular orbit 1 radius: rE

Semi-major axis of elliptical orbit:

a “
rE ` rJ

2

Circular orbit 2 radius: rJ

Thus, Velocity at Earth in circular orbit =

c

GM

rE

Velocity at Earth in elliptical orbit =

d

GM

ˆ

2

rE
´

2

rE ` rJ

˙

Velocity at Jupiter in elliptical orbit =

d

GM

ˆ

2

rJ
´

2

rE ` rJ

˙

Velocity at Jupiter in circular orbit =
c

GM

rJ

Now, to find the δv at each stage, compute the differences in velocities between each interface
between the elliptical and circular orbits.

δv1 “

d

GM

ˆ

2

rE
´

2

rE ` rJ

˙

´

c

GM

rE
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δv2 “

c

GM

rJ
´

d

GM

ˆ

2

rJ
´

2

rE ` rJ

˙

δvtot “
?
GM

ˆ

c

2

rE
´

2

rE ` rJ
´

c

1

rE
`

c

1

rJ
´

c

2

rJ
´

2

rE ` rJ

˙

(f) Key: use the vis-viva equation.

Vis-viva equation:

v2 “ GM

ˆ

2

r
´

1

a

˙

Semi-major axis of ellipse 1:

a1 “
rE `X

2

Semi-major axis of ellipse 2:

a2 “
rJ `X

2

Velocity at Earth in Earth’s orbit:
?
GM

c

1

rE

Velocity at Earth in elliptical orbit 1:

?
GM

c

2

rE
´

1

a1

Velocity at joint apoapsis in elliptical orbit 1:

?
GM

c

2

X
´

1

a1

Velocity at joint apoapsis in elliptical orbit 2:

?
GM

c

2

X
´

1

a2

Velocity at Jupiter in elliptical orbit 2:

?
GM

c

2

rJ
´

1

a2

Velocity at Jupiter in Jupiter’s orbit:
?
GM

c

1

rJ

Using the above equations, we can write all the δv’s.

Speed boost to enter elliptical orbit 1:

δv1 “
?
GM

ˆ

c

2

rE
´

1

a1
´

c

1

rE

˙
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Speed boost to enter elliptical orbit 2:

δv2 “
?
GM

ˆ

c

2

X
´

1

a2
´

c

2

X
´

1

a1

˙

Speed reduction to enter Jupiter’s orbit:

δv3 “
?
GM

ˆ

c

2

rJ
´

1

a2
´

c

1

rJ

˙

Total δv, replacing X “ 12rE :

δvtot “
?
GM

ˆ

c

2

rE
´

1

a1
´

c

1

rE
`

c

1

6rE
´

1

a2
´

c

1

6rE
´

1

a1
`

c

2

rJ
´

1

a2
´

c

1

rJ

˙

(g) This could be algebraically solved. Much more simply, plug in rE “ 1 AU and rJ “ 5 AU to
the time and velocity equations. The Hohmann transfer is both faster and more efficient in terms
of energy use (δv).

3. (30 points) A space station of mass m is orbiting a planet of mass M0 on a circular orbit of radius r.
At a certain moment, a satellite of mass m is launched from the space station with a relative velocity ÝÑw

oriented towards the center of the planet. Assume that w ă
b

GM0

r .

(a) Justify the shape of the satellite’s orbit after launching and, for the satellite-planet system, deter-
mine the following quantities:

(1) Satellite’s velocity relative to the planet, immediately after launch, v

(2) Total angular momentum of the satellite-planet system, LP,Sat
(3) Satellite’s orbit semi-major and semi-minor axes, aSat and bSat
(4) Satellite’s orbit eccentricity, εSat
(5) Apogee and perigee distances, rmax,Sat and rmin,Sat
(6) Satellite’s minimum velocity, vmin,Sat and maximum velocity vmax,Sat on it’s orbit

(7) Total energy of the satellite-planet system, ESat,P .

(b) Determine the shape of the space station’s orbit relative to the planet, after the satellite was
launched.

Solution:

(a) The absolute velocity of the satellite ( relatively to the planet) at the moment of launching is:

ÝÑv “ ÝÑw `ÝÑu

,where u is the orbital station’s velocity relatively to the planet.

v “
a

w2 ` u2

u “ ω0r

,where ω0 is the angular velocity of the space station orbiting around the planet, before the
satellite was launched.

T0 “
2πr

u
“

2π

ω0
“
u

r
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,where T0 is the orbital period of the space station, before the satellite was launched.

mu2

r
“
GmM0

r2

u “

c

GM0

r
ω0 “

c

GM0

r3

Thus, we get:

v “

c

w2 `
GM0

r
ą w

So, after the satellite was launched at point Q, it will move on an elliptical orbit, having the
planet as a one of the focal points. This happens because the total energy of the satellite -
planet system, calculated for the moment when the satellite is injected on its orbit is:

EQ,S´P “
mv2

2
´
GmM0

r
“
m

2
pw2 ` u2q ´

GmM0

r

EQ,S´P “
m

2
pw2 `

GM0

r
q ´

GmM0

r

EQ,S´P “
m

2
pw2 ´

GM0

r
q

w ă

c

GM0

r
; w2 ă

GM0

r
; EQ,S´P ă 0

Having this, we can determine the angular momentum of the space station relatively to the
fixed planet, corresponding to point Q (point of injection):

ÝÝÝÝÑ
LQ,Sat “ ÝÑr ˆmv “ ÝÑr ˆmpÝÑw `ÝÑu q

But the angle between ÝÑr and ÝÑw is 180˝. Thus, ÝÑr ˆÝÑw “ 0. So:

ÝÝÝÝÑ
LQ,Sat “ ÝÑr ˆmÝÑu

Moreover, the angle between ÝÑr and ÝÑu is 90˝. Thus, we get:

LQ,Sat “ mru u “ ω0r

LQ,Sat “ mr2ω0 “ mr2

c

GM0

r3
“ m

a

GrM0

Evolving on an elliptical orbit around the planet, when the satellite will reach the minimum
distance from the planet, its angular momentum will be:

ÝÝÝÝÑ
LP,Sat “ ÝÝÝÝÝÑrmin,Sat ˆmÝÝÝÝÝÑvmax,Sat

Because the angle between ÝÝÝÝÝÑrmin,Sat and ÝÝÝÝÝÑvmax,Sat is 90˝, we get:

LP,Sat “ mrmin,Satvmax,Sat

Because the total angular momentum is conserved:

LP,Sat “ LQ,Sat “ LA,Sat

mrmin,Satvmax,Sat “ m
a

GrM0 “ mrmax,Satvmin,Sat
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Thus, we get:
rmin,Satvmax,Sat “

a

GrM0 “ rmax,Satvmin,Sat

vmax,Sat “

?
GrM0

rmin,Sat
; v2

max,Sat “
GrM0

r2
min,Sat

vmin,Sat “

?
GrM0

rmax,Sat
; v2

min,Sat “
GrM0

r2
max,Sat

Also, the total mechanical energy of the satellite - planet system is conserved, thus:

EQ,S´P “ EP,S´P

1

2
mpw2 `

GM0

r
q ´

GmM0

r
“
mv2

max,Sat

2
´

GmM0

rmin,Sat

pw2 `
GM0

r
q ´

2GM0

r
“ v2

max,Sat ´
2GM0

rmin,Sat

w2 ´
GM0

r
“ v2

max,Sat ´
2GM0

rmin,Sat

But:

v2
max,Sat “

GrM0

r2
min,Sat

Thus:

w2 ´
GM0

r
“

GrM0

r2
min,Sat

´
2GM0

rmin,Sat

pw2 ´
GM0

r
qr2
min,Sat ` 2GM0rmin,Sat ´GrM0 “ 0

By solving this, we get:

rmin,Sat “
rp´GM0 ˘ w

?
GM0rq

w2r ´GM0

rmin,Sat “
rpGM0 ¯ w

?
GM0rq

GM0 ´ w2r

Because we are searching for the minimum value, we will assign rmin,Sat the negative solution.
Thus, the positive solution will be the value for rmax,Sat. Thus:

rmin,Sat “
rpGM0 ´ w

?
GM0rq

GM0 ´ w2r

vmax,Sat “
r

rmin,Sat

c

GM0

r

Thus, we get;

vmax,Sat “
GM0 ´ w

2r

GM0 ´ w
?
GrM0

c

GM0

r

Consequently, for rmax,Sat:

rmax,Sat “
rpGM0 ` w

?
GM0rq

GM0 ´ w2r

vmin,Sat “
r

rmax,Sat

c

GM0

r

Page 13



Thus:

vmin,Sat “
GM0 ´ w

2r

GM0 ` w
?
GrM0

c

GM0

r

From the properties of the ellipse:

rmin,Sat ` rmax,Sat “ 2aSat

,where a is the semi-major axis of the ellipse. Thus:

rpGM0 ` w
?
GM0rq

GM0 ´ w2r
`
rpGM0 ´ w

?
GM0rq

GM0 ´ w2r
“ 2aSat

aSat “
GrM0

GM0 ´ rw2
ą r

Using the conservation laws for the total energy and total angular momentum, we prove that:

LSat “ mbSat

c

GM0

aSat
“ LP,Sat “ mvmax,Satrmin,Sat

bSat

c

GM0

aSat
“ vmax,Satrmin,Sat

bSat “ vmax,Satrmin,Sat

c

aSat
GM0

“
a

GrM0 ¨

c

aSat
GM0

Thus, the semi-minor axis is:

bSat “ r ¨

c

GM0

GM0 ´ rw2

Now, we can determine the eccentricity of the satellite’s orbit:

eSat “

d

1´
b2Sat
a2
Sat

“

g

f

f

f

e

1´
r2 ¨ GM0

GM0´rw2

r2 ¨

´

GM0

GM0´rw2

¯2 “

d

1´
GM0 ´ rw2

GM0

Thus, we get:

eSat “ w

c

r

GM0

The total energy of the satellite-Earth system is:

ESat´E “ ´
GmM0

2aSat

,where aSat “ r GM0

GM0´rw2 .

ESat´E “ ´
GmM0

2r GM0

GM0´rw2

“ ´GmM0
GM0 ´ rw

2

2rGM0

ESat´E “ ´
mpGM0 ´ rw

2q

2r
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(b) After the satellite was launched with a radial relative velocity of ÝÑw towards the planet, the
space station also gained a radial velocity

ÝÑ
W oriented in the opposite direction of ÝÑw because

the total momentum is conserved:
ÝÑ
V “

ÝÑ
W `ÝÑu

V “
a

W 2 ` u2

Conservation of momentum:

M
ÝÑ
W `mÝÑw “ 0; W “

m

M
w; m ăM ; W ă w;

V “

c

m2

M2
w2 ` u2; V ă v;

In order to determine the shape of the orbit we need to calculate the total energy of the
station-planet system:

ESta,P “
MV 2

2
´
GMM0

r
“
M

2
p
m2

M2
w2 ` u2q ´

GMM0

r

ESta,P “
M

2
p
m2

M2
w2 `

GM0

r
q ´

GMM0

r

ESta,P “
1

2
M
m2

M2
w2 ´

1

2

GMM0

r

ESta,P “
1

2
M
m2

M2

GM0

r
´

1

2

GMM0

r

ESta,P “
1

2

GMM0

r
p
m2

M2
´ 1q ă 0

Thus, after the satellite is launched, the space station will move on an elliptical orbit around
the planet.
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