
3 Medium Questions

1. (20 points) To measure the time accurately outside the Earth, the engineers build a special clock,
with the design as follows: there is a source of light that sends light particles (photons) straight to the
reflector that is located at the distance d away from the source. The reflector sends the photons back to
their starting point, where there is a detector. This can measure the time accurately, because the speed
of light c is constant everywhere. Then a group of engineers built a spaceship with this special clock
inside. This spaceship with a clock started to move really fast at the speed u. While the observer in the
spaceship reported no issues with the clock inside the spaceship, the observer on the Earth has noticed
that the clock is functioning differently in a fast moving spaceship than it is on Earth.

(a) Given that the clock is at rest, what is the total traveling time (∆tE) of a photon from its source
back to the detector?

(b) What is the total distance traveled by a photon dγ from the source back to the detector on the
spaceship moving at the speed u away from the Earth? (Here, we denote that the total traveling
time of the photon as ∆tS)

(c) What is the total time ∆tS of a photon as it travels from the source to the detector on the moving
spaceship? Answer in terms of d, c, and β “ v

c .

(d) If we relate ∆tE (non-moving frame) to ∆tS (moving frame), as follows: ∆tS “ γ∆tE , what does
γ equal to? What is significant about the range of γ?

(e) So far, we have only analyzed the motion on the perspective of an observer on the Earth. From the
perspective of an observer on the moving spaceship, how do the time on the spaceship ∆tS

1 and
the time on the Earth ∆tE

1 relate to each other?

(f) What can we conclude about the relative passing on time on two different frames that are relatively
in motion to one another?

2. (30 points) You want to send a rocket with an instrument to analyze the atmosphere of Jupiter. In
order to get there, you decide to use a Hohmann transfer orbit. rE “ 1 AU and rJ “ 5 AU represent
the radii of Earth’s and Jupiter’s circular orbits around the Sun, respectively. m, ME , MJ , and MS

represent the masses of your rocket, Earth, Jupiter, and Sun, respectively. Ignore planetary gravitational
influences. You may use any other variables you would like if you clearly define them first. Refer to the
figures at the end of the question. Show your work for all derivations.
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(a) Explain which two (relevant) physical quantities are conserved during this transfer orbit. Write
down their statements mathematically.

(b) How long will it take to reach Jupiter?

(c) Halfway through its path to Jupiter, an unrealistic comet passes right next to your rocket and its
icy tail freezes your rocket fuel. What is the maximum amount of time that you can afford to
pass until you need the fuel to be once again unfrozen?

(d) Knowing that this comet will come in the way, your colleague suggests a bi-elliptic transfer orbit
instead, with a peak distance of 12rE . Write equations describing how long it will now take to
reach Jupiter. Will this solution always avoid the comet?

Now that you’ve compared the orbital times, you want to try and calculate the difference in effi-
ciency.

(e) Derive the δv for each orbital transition in the Hohmann transfer, and sum them to find the total
δv.

(f) Derive the δv for each orbital transition in the Bi-elliptic transfer, and sum them to find the total
δv.

(g) Factoring in all your previous results, which transfer would you like to use? Why?

Figure 1: Hohmann Transfer
Figure 2: Bi-elliptic Transfer

3. (30 points) A space station of mass m is orbiting a planet of mass M0 on a circular orbit of radius r.
At a certain moment, a satellite of mass m is launched from the space station with a relative velocity ÝÑw

oriented towards the center of the planet. Assume that w ă
b

GM0

r .

(a) Justify the shape of the satellite’s orbit after launching and, for the satellite-planet system, deter-
mine the following quantities:

(1) Satellite’s velocity relative to the planet, immediately after launch, v

(2) Total angular momentum of the satellite-planet system, LP,Sat

(3) Satellite’s orbit semi-major and semi-minor axes, aSat and bSat

(4) Satellite’s orbit eccentricity, εSat

(5) Apogee and perigee distances, rmax,Sat and rmin,Sat

(6) Satellite’s minimum velocity, vmin,Sat and maximum velocity vmax,Sat on it’s orbit

(7) Total energy of the satellite-planet system, ESat,P .

(b) Determine the shape of the space station’s orbit relative to the planet, after the satellite was
launched.
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