
4 Long Questions

1. (40 points) In the very early universe, everything is in thermodynamic equilibrium and particles are
freely created, destroyed, and converted between each other due to the high temperature. In one such
process, the reaction converting between neutrons and protons happens at a very high rate. In thermal
equilibrium, the relative number density of particle species is given approximately by the Boltzmann
factor:

ni9 exp

„

´
Ei
kBT



,

where Ei “ mic
2 is the rest energy. Additionally, the temperature during the radiation-dominated early

universe is given by T ptq « 1010 K
`

t
1 s

˘´1{2
, where t is the time since the Big Bang.

(a) (4 points) At a temperature where kBT « 0.8 MeV, known as the freeze-out temperature, the
neutrino interactions essentially stop, preventing further conversion between protons and neutrons.

i. (2 points) About how long after the Big Bang did this occur?

ii. (2 points) At the freeze-out temperature, what was the equilibrium ratio of the number density
of neutrons to that of protons?

(b) (3 points) Free neutrons are unstable, and decay into protons with a characteristic decay time of
τ “ 886 s (the time for which the number of neutrons drops to 1{e of the original amount). Given
that helium nuclei only formed tnuc “ 200 s after freezing out, what was the ratio of the number
density of neutrons to that of protons when the helium nuclei formed?

(c) (7 points) While trace amounts of several small nuclei were formed during Big Bang Nucleosynthesis
(BBN), assume that all neutrons go into forming helium-4.

i. (5 points) After the helium nuclei formed, what was the ratio of the number of helium-4 nuclei
to the number of hydrogen nuclei?

ii. (2 points) Approximating the mass of helium-4 as 4 times that of H (for this part only), what
fraction of baryonic mass in the universe is helium?

If you weren’t able to solve part (c), assume reasonable values for the initial mass fractions of hydrogen
and helium for future parts.

(d) (2 points) Albert the Astronomer claims that in older galaxies, the mass fraction of hydrogen should
gradually be increasing, as neutrons slowly continue to decay into protons. Is his claim correct? If
not, explain.

(e) (7 points) Suppose a certain region of a galaxy has a density of 10´19 kg{m3 and is composed of
70% hydrogen and 30% helium-4 by mass (ignore any heavier elements). Because the region is
gravitationally bound, this density doesn’t change significantly with the expansion of the universe;
approximate it as constant. Assume hydrogen is converted into helium by the fusion reaction:

4 1H` ` 2e´ Ñ 4He2`
` 2νe,

where the electron e´ and electron neutrino νe are of negligible mass. 4He has a mass of mHe “

3728.4 MeV{c2

i. (4 points) Over the entire time since BBN, how much energy does this process release per cubic
kiloparsec? Give your answer in joules per cubic kiloparsec.

ii. (3 points) Assuming the age of the universe is 13.8 billion years, calculate the average luminosity
density in solar luminosities per cubic kiloparsec.

Let’s go back and explore how we arrived at the number tnuc « 200 s, the time at which Big Bang
nucleosynthesis began. Let’s define tnuc as the time at which half the neutrons fused with protons into

Page 16



deuterium (2H), as deuterium fusion is the first step in BBN. From the Maxwell-Boltzmann equation,
the relative abundances of deuterium, protons and neutrons is given by

nD
npnn

“ 6

ˆ

mnkBT

π~2

˙´3{2

exp

ˆ

BD
kBT

˙

,

where BD “ pmp `mn ´mDq c
2 “ 2.22 MeV is the energy released in a deuterium fusion reaction.

(f) (3 points) The number density of photons is given by nγ “ 0.243
`

kBT
~c

˘3
. Find an expression for

the number density of protons np in terms of the temperature T and the baryon to photon ratio η.
You may use your answer to part (b).

(g) (3 points) Find the present-day baryon to photon ratio. The CMB temperature is 2.725 K, and the
present-day density parameter for baryonic matter is Ωb,0 “

ρb,0
ρc,0

“ 0.04. ρc is the critical density

of the universe, which is the density required for a flat universe; it is given by ρc “
3H2

8πG . Use
H0 “ 70 km{s{Mpc.

(h) (8 points) Assuming the baryon to photon ratio is fixed since the Big Bang:

i. (5 points) Find an equation involving Tnuc (the temperature at time t “ tnuc) and known
constants.

ii. (1 point) What temperature Tnuc does tnuc “ 200 s correspond to?

iii. (2 points) Verify that this temperature solves your equation in part (h)i.

(i) (3 points) The baryon to photon η is a remarkably small number. One possibility is that the universe
happens to prefer photons significantly over baryons. Another possibility is that a great number of
quark-antiquark pairs were created in the early universe via pair production (γ ` γ é q ` q̄), and
a slight asymmetry of quarks over antiquarks produced a large number of photons during quark-
antiquark annihilation, leaving over a small number of quarks to form into protons and neutrons.
Find the quark-antiquark asymmetry

δq ”
nq ´ nq̄
nq ` nq̄

! 1

that would yield the baryon to photon ratio found in part (g).

Solution:

(a) i. When kBT « 0.8 MeV, we have

T “
0.8 MeV

kB

“
1.28 ¨ 10´13 J

1.381 ¨ 10´23 J{K

“ 9.28 ¨ 109 K.

Now, we have

t “

ˆ

1010

T

˙2

“ 1.16 s .

ii. Let np be the number density of protons, and nn the number density of neutrons. Then,
we have that the ratio nn

np
is

exp
”

´mnc
2

kBT

ı

exp
”

´
mpc2

kBT

ı “ exp

„

´
pmn ´mpqc

2

kBT



.
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Plugging in mnc
2 ´ mpc

2 “ 939.6 ´ 938.3 “ 1.3 MeV and kBT “ 0.8 MeV, we get
nn

np
“ 0.197 .

(b) For every proton, there is initially 0.197 of a neutron. This decays according to nn “

nn,0 exp
`

´ t
τ

˘

. We have 0.197 exp
`

´ 200 s
886 s

˘

“ 0.157, so the new ratio is 0.157
1`0.197´0.157 “ 0.151

(taking into account that the decayed neutrons turn into protons).

(c) i. Using the answer to part (b), for every 0.151 neutrons, there is 1 proton. Then, they can
form 0.151{2 “ 0.076 helium-4 nuclei, and the remaining 1 ´ 0.151 “ 0.849 protons can
form 0.849 hydrogen nuclei.

Thus, the ratio of helium nuclei to hydrogen nuclei is 0.075
0.849 “ 0.089 .

ii. The mass ratio is 4 ¨ 0.089 “ 0.356, which gives a mass percentage of 0.356
1`0.356 “ 26.3%

(d) Albert is not correct . Only free neutrons are unstable, and the vast majority of neutrons
in the universe are bound up in nuclei, particularly helium-4. Furthermore, fusion in stars
actually decreases the fraction of hydrogen, as explored in the following part.

(e) i. Since the electron and electron neutrino are of negligible mass, each reaction releases
4mpc

2´mHec
2 “ 4 ¨938.3 MeV´3728.4 MeV “ 24.8 MeV. Hydrogen went from a density

of p1´0.263q ¨10´19 kg{m3 “ 7.37ˆ10´20 kg{m3 to 0.70 ¨10´19 kg{m3 “ 7ˆ10´20 kg{m3,
with a difference of 3.7 ˆ 10´21 kg{m3. This means that the energy released per cubic
kiloparsec is

24.8 MeV¨
3.7ˆ 10´21 kg{m3

4 ¨ 1.6726ˆ 10´27 kg
¨

ˆ

3.086ˆ 1019 m

1 kpc

˙3

¨
1.6022ˆ 10´13 J

1 MeV
“ 6.5ˆ 1052 J{kpc3 .

ii. In seconds, 13.8 billion years is 13.8 ˆ 109 ¨ 365.25 ¨ 24 ¨ 3600 s “ 4.35 ˆ 1017 s. Thus,

the average power per cubic kiloparsec is 6.5ˆ1052 J{kpc3

4.35ˆ1017 s “ 1.50 ˆ 1035 W{kpc3. In solar

luminosities, this quantity is 1.50ˆ1035 W{kpc3

3.85ˆ1026 W{Ld
“ 3.90ˆ 108 Ld{kpc3 .

(f) From part (b), the ratio of neutrons to protons is 0.151. Thus, the proton to baryon ratio is
1

1`0.151 “ 0.869, or np “ 0.869nb. By definition, nb “ nγη “ 0.243η
`

kBT
~c

˘3
. We arrive at the

expression np “ 0.211η

ˆ

kBT

~c

˙3

.

(g) Let us first find the present-day number density of photons. Simply plugging in T “ 2.725 K
into the expression given in part (f), we have

nγ “ 0.243

ˆ

kB ¨ 2.725 K

~c

˙3

“ 4.09 ¨ 108 photons{m3.

To find the present-day number density of baryons, we first need to find the present-day critical

density. Using H0 “ 70 km{s{Mpc “ 2.3 ¨ 10´18 s´1, we have ρc,0 “
3H2

0

8πG “ 9.2 ¨ 10´27 kg/m
3
.

Since Ωb,0 “ 0.04, ρb,0 “ 0.04 ¨ 9.2 ¨ 10´27 kg/m
3
“ 3.7 ¨ 10´28 kg/m

3
. Finally, baryonic matter

is composed of protons and neutrons; since mp « mn, we can divide by the mass of a proton
and find the number density of baryons

nb “
3.7 ¨ 10´28 kg

m3
¨

1 baryon

1.6726 ¨ 10´27 kg
“ 0.22 baryons/m

3
.

The baryon to photon ratio is η “ 5.4 ¨ 10´10 .
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(h) i. Earlier, we defined tnuc to be the time at which half the neutrons fused into deuterium,
or nD

nn
“ 1. Setting nD

nn
“ 1 and plugging in our expression for np from part (f), we find

1 “ 0.211η

ˆ

kBT

~c

˙3

¨ 6

ˆ

mnkBT

π~2

˙´3{2

exp

ˆ

BD
kBT

˙

1 « 7η

ˆ

kBTnuc
mnc2

˙3{2

exp

ˆ

BD
kBTnuc

˙

ii. Using T ptq « 1010 K
`

t
1 s

˘´1{2
, we get T pt “ 200 sq “ 7 ¨ 108 K . The corresponding

energy is kBTnuc “ 0.061 MeV.

iii. Using kBTnuc “ 0.061 MeV, we have

7η

ˆ

kBTnuc
mnc2

˙3{2

exp

ˆ

BD
kBTnuc

˙

“ 7 ¨ 5.4 ¨ 10´10

ˆ

0.061 MeV

939.6 MeV

˙3{2

exp

ˆ

2.22 MeV

0.061 MeV

˙

“ 13

Due to the exponential, this expression is very sensitive to small changes in kBT . Thus
for this expression, an answer of 13 is roughly consistent with 1. The exact solution is
kBT “ 0.066 MeV, which still corresponds to tnuc “ 200 s to the nearest significant
figure.

(i) 2nq̄ quarks are annihilated, producing 2nq̄ « nq ` nq̄ photons. nq ´ nq̄ quarks are left over to
form pnq ´ nq̄q{3 baryons. The resulting baryon to photon ratio is thus

η “
pnq ´ nq̄q{3

nq ` nq̄
“

1

3
δq.

Using η “ 5.4 ¨ 10´10, we find a quark-antiquark asymmetry of δq “ 1.6 ¨ 10´9 ; there was one

extra quark in 800 million quark-antiquark pairs.

2. (35 points) In 2020, during the day of the winter solstice for the Northern hemisphere, Jupiter and
Saturn were at their minimum angular separation (approximately 6.11’) during the Great Conjunction.

(a) (6 points) Consider a system with three planets in circular, concentric, and coplanar orbits around
a star. Suppose that the three planets and the star are initially aligned. Will they necessarily
align again after this moment? Prove your answer with quantitative arguments. Assume that the
sidereal periods of all planets are rational numbers in terms of some unit period.

(b) (4 points) Suppose that there were N planets instead of three in the system from item A. N is an
integer greater than 3. If the orbits were still circular, concentric, and coplanar, and the planets
and star were all initially aligned, would they necessarily align again afterwards? Assume that the
sidereal periods of all planets are rational numbers in terms of some unit period.

(c) (8 points) In the system from (a), if the three planets were not initially aligned with respect to the
star, would they necessarily be perfectly aligned at some point? Again, use quantitative arguments
to prove your answer.

(d) (4 points) Suppose that you are an astronomer who wants to use a telescope to observe the con-
junction. Since you are a very skilled astronomer, you are going to build your own telescope. The
only basic requirement you want to meet is that your telescope must be able to resolve the planets
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at the minimum separation during the conjunction. Calculate the value of all parameters of your
telescope that are relevant for this goal. Do not try to calculate the values of any parameters that
are not related to this requirement.

(e) (8 points) Calculate the total apparent magnitude of the planets together in the conjunction. As-
sume that the observers see Jupiter and Saturn as a single point in the sky, but Saturn is not
covered (totally or partially) by Jupiter. For this item, neglect the atmospheric extinction, consider
that the planets reflect isotropically, and consider that the albedos of both Jupiter and Saturn are
equal to one. Also, in order to make the calculations simpler, assume that both Jupiter and Saturn
were almost in opposition with respect to the Earth (even though this was not the case for this
conjunction).

(f) (5 points) Calculate the difference in the magnitude of the conjunction at the zenith and at a zenith
distance of 15o. Assume that the zenith optical depth of Earth’s atmosphere for visible light is 0.50.

• Mean orbital radius of Jupiter: 5.2 AU

• Mean orbital radius of Saturn: 9.5 AU

• Radius of Jupiter: 7.1492ˆ 107 meters

• Radius of Saturn: 5.8232ˆ 107 meters

• Apparent magnitude of the Sun: ´26.74

• Central wavelength of visible light: 550 nm

Solution:

(a) It is possible to write the following expression for the synodic period between the first two
planets (S1,2, in which planet 1 is the closest to the star, and Tn represents the sidereal period
of the nth planet):

1

S1,2
“

1

T1
´

1

T2

S1,2 “
T1T2

T2 ´ T1

Likewise, the synodic period between planets 1 and 3 (S1,3) is the following:

S1,3 “
T1T3

T3 ´ T1
.

It is important to notice that both synodic periods are rational numbers. All sidereal periods
are rational numbers, and by definition, the subtraction or division of two rational numbers
must result in a rational number, so both S1,2 and S1,3 are rational.

If we assume that the planets are aligned at t “ 0, planets 1 and 2 must be aligned at all
instants t “ m ¨S1,2, in which m P N. Likewise, planets 1 and 3 must be aligned at all instants
t “ n ¨ S1,3, in which n P N. Therefore, the following condition must be met for a triple
alignment:

m ¨ S1,2 “ n ¨ S1,3

m

n
“
S1,3

S1,2

m

n
“ r.
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Since r is the ratio between two rational numbers, it must also be a rational number. By
definition, every rational number might be expressed as the ratio between two integers. In
this case, since r must be positive, the two integers must have the same sign. Therefore, this
equation has solutions in which m,n P N, so the planets will align periodically after t “ 0.

(b) It is possible to expand the alignment condition from item A to more planets:

m1 ¨ S1,2 “ m2 ¨ S2,3 “ ... “ mn ¨ Sn,n`1.

In this equation, all mn terms are natural numbers greater than zero.

Again, it is possible to use the definition of a rational number to solve this problem. As
demonstrated on item A, if the sidereal periods are rational numbers, the synodic periods
must be rational as well. Since a rational number might be expressed as a ratio between two
integers, the product mn ¨ Sn,n`1 is an integer for certain values of mn. Therefore, there are
values of mn for which all mn ¨ Sn,n`1 terms in the alignment equality are natural numbers.
By definition, any set of natural numbers has a least common multiple (LCM), and an infinite
number of common multiples. Therefore, it is possible to multiply all mn ¨Sn,n`1 terms by an
integer factor to obtain the LCM. If all terms are equal to the LCM, the alignment equality is
true, which proves that all planets are aligned at an instant later than t “ 0.

(c) In order to obtain an expression for the instants t1,2 in which the first two planets are aligned,
it is possible to write the following formula, in which m P N and θi,n corresponds to the initial
angular position of the nth planet:

θi,1 `
2π

T1
t1,2 ` 2πm “ θi,2 `

2π

T2
t1,2

t1,2

ˆ

1

T1
´

1

T2

˙

“

ˆ

θi,2 ´ θi,1
2π

´m

˙

t1,2 “
1

S1,2

ˆ

θi,2 ´ θi,1
2π

´m

˙

Likewise, the formula for the alignment between planets 1 and 3 will be the following:

t1,3 “
1

S1,3

ˆ

θi,3 ´ θi,1
2π

´ n

˙

.

In this formula, n is a natural number.

Therefore, it is possible to write the following equality for the alignment between three planets:

1

S1,2

ˆ

θi,2 ´ θi,1
2π

´m

˙

“
1

S1,3

ˆ

θi,3 ´ θi,1
2π

´ n

˙

In order to simplify the formula, it is possible to group a few variables together:
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α “
S1,3

S1,2

β “
θi,2 ´ θi,1

2π

γ “
θi,3 ´ θi,1

2π

Since α, β, and γ are the result of consecutive subtractions and divisions of rational numbers,
they are also rational numbers. However, they are not necessarily rational.

It is possible to rewrite the formula using α, β, and γ:

αpβ ´mq “ pγ ´ nq

αm´ n “ αβ ´ γ

It is possible to define a new variable δ to simplify the expression even more:

αm´ n “ δ

From this expression, it is clear that there are values of α and δ for which there are no solutions
in which both m and n are natural numbers.

The easiest way to demonstrate this is with a simple counterexample. Suppose that α “ 2 and
δ “ 3.5.

2m´ n “ 3.5

If both 2n and m are integers, the result of the subtraction should necessarily be an integer.
However, since 3.5 is not an integer, there are no solutions for which both m and n are
integers. Therefore, if the three planets are not initially aligned, they might never have a
triple conjunction.

It is important to highlight that α is a function only of the planets’ periods, but δ is a function
of both the periods and the initial angular positions. Therefore, the method of choosing
arbitrary values for a counterexample is valid.

Note: For the first three items of this question, students were allowed to assume that the
periods of the planets are rational numbers.
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However, the period of a body in a circular motion is not necessarily a rational number. It
must be a real number, but it might also be an irrational number. For instance, consider a
circular movement with an angular velocity of 1 rad/s. In this case, the period would be equal
to 2π, which is an irrational number.

The reason why this question assumes that the periods are rational numbers is that it is impos-
sible to measure periods with an infinite number of significant figures. On the aforementioned
example, although 2π is an irrational number, 6.28319 is rational. Since we can only measure
periods with a limited number of significant figures, even our most precise measurement for
the period of any planet will still be a rational number.

It is also important to notice that in a real life situation, it is essential to consider that planets
are not point particles and take into account the radius of each planet. Consider a hypothetical
system with three planets with periods of 0.5 year, 1 year, and 2.000000000000000000000001
years. It is clear that if the planets are initially aligned, they will be pretty much aligned again
in two years (considering that the third period is equal to approximately 2 years). However,
because the third period is not exactly 2 years, the time interval until the next perfect alignment
is very long. In this case, it makes much more sense to consider that the period between the
alignments is equal to two years, not to a very large number.

(d) In this the, the angular resolution must be less of equal to 6.11’. Besides the wavelength, the
diameter is the only parameter that affects the angular resolution. It is possible to use the
following formula to calculate the diameter:

θ “ 1.22
λ

D

D “ 1.22
λ

θ

Since θ ď 6.111 and visible light is centered at 550 nm:

D ě 1.22
5.50ˆ 10´7

6.11π{p60ˆ 180q

D ě 3.78ˆ 10´4m

6 The diameter of the telescope must be greater or equal to 3.78 ˆ 10´4 m. In other words,
basically any telescope you could possibly build will meet this requirement.

(e) Solar flux that arrives at Jupiter and Saturn:

FJ “
Ld

4πr2
J

FS “
Ld

4πr2
S
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Flux from Jupiter and Saturn that arrives at the Earth:

F‘1 “
FJπR

2
J

4πprJ ´ r‘q2
`

FSπR
2
S

4πprS ´ r‘q2

F‘1 “
LdR

2
J

16πr2
JprJ ´ r‘q

2
`

LdR
2
S

16πr2
SprS ´ r‘q

2

F‘1 “
Ld
16π

ˆ

R2
J

r2
JprJ ´ r‘q

2
`

R2
S

r2
SprS ´ r‘q

2

˙

Solar flux that arrives at the Earth:

F‘2 “
Ld

4πr2
‘

Ratio between the fluxes:

F‘1

F‘2
“
r2
‘

4

ˆ

R2
J

r2
JprJ ´ r‘q

2
`

R2
S

r2
SprS ´ r‘q

2

˙

F‘1

F‘2
“
p1.496ˆ 1011q2

4

ˆ

p7.1492ˆ 107q2

5.22 ˆ 4.22 ˆ p1.496ˆ 1011q4
`

p5.8232ˆ 107q2

9.52 ˆ 8.52 ˆ p1.496ˆ 1011q4

˙

F‘1

F‘2
“ 1.2551ˆ 10´10

Using Pogson’s Law:

mConjunction ´md “ ´2.5ˆ log

ˆ

F‘1

F‘2

˙

mConjunction “ ´2.5ˆ logp1.2551ˆ 10´10q ´ 26.74

mConjunction “ ´1.99

6 The apparent magnitude of the great conjunction is equal to ´1.99.

Note: While students were supposed to assume that an observer would see Jupiter and Saturn
as a single point in the sky, the minimum separation of 6.11’ corresponds to about 1/5 of the
Moon’s angular diameter, so the human eye can easily resolve this angular separation.
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(f) The optical depth (τ) is defined by the following expression, in which κ is the opacity coefficient,
ρ is the density of the medium, and s is the distance travelled in the medium:

τ “ κρs

Using the flat atmosphere approximation, which works well for small zenith distances, it is
possible to calculate the optical depth of the Earth’s atmosphere at a zenith distance of 15o

(τ15). The only factor that varies in this case is the distance travelled, which is equal to
dz ˆ secp15oq, in which dz is the distance travelled for a zenith distance of 0o.

Therefore, is is possible to use the zenith optical depth τz to calculate τ15:

τ15 “ τz ˆ secp15oq

τ15 “ τz ˆ secp15oq

τ15 “ 0.5ˆ secp15oq

τ15 “ 0.5176

Considering that the ratio between the flux outside the atmosphere and the flux after atmo-
spheric extinction is by definition the exponential function of the optical depth, it is possible
to calculate the ratio between the fluxes for the zenith and for a zenith distance of 15o:

F15

Fz
“
F0 ¨ e

´τ15

F0 ¨ e´τz

“ eτz´τ15

“ e0.5´0.5176

“ 0.9825.

Now, it is possible to use Pogson’s Law to calculate the difference in magnitude:

∆m “ ´2.5 ¨ log

ˆ

F15

Fz

˙

“ ´2.5 ¨ logp0.9825q

“ 1.92ˆ 10´2.

6 The difference in magnitude between the Great Conjunction seen at a zenith distance of
15˝ and the Great Conjunction seen at the zenith corresponds to 1.92ˆ 10´2.
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