Long Problems

Long Problem 1 [30]

Use the given table to answer the following questions.

Star	Right Ascension	Declination
Aldebaran	$4^{ m h} 36^{ m m}$	$16^{\circ}31'$
Miaplacidus	$9^{ m h}13^{ m m}$	$-69^{\circ}42'$
Deneb	$20^{ m h}41^{ m m}$	$45^{\circ}20'$
Regulus	$10^{ m h}08^{ m m}$	$12^{\circ}18'$
Hadar	$14^{ m h}04^{ m m}$	$-60^{\circ}24'$

a. If the star Deneb crosses your local meridian, how long must you wait until Miaplacidus crosses your local meridian? [3]

b. The coordinates of Jakarta, Indonesia is 6.17 degrees South and 106.82 degrees East . Which of these stars would never be visible to an observer in Jakarta? [4]

c. At the instant Miaplacidus crosses the local meridian of an observer in Jakarta, what is its altitude and azimuth? [3]

d. At the instant Miaplacidus crosses the local meridian of an observer in Jakarta, what is the latitude and longitude of an observer who will see Aldebaran at the zenith? [3]

e. For an observer at Jakarta, how long will Aldebaran be above the horizon, from sunset to sunrise? [6]

f. What is the angular separation between Regulus and Hadar? [6]

g. When Aldebaran is rising, what is the altitude of Miaplacidus as seen by an observer in Jakarta? [5]

Long Problem 2 [37]

The energy density of blackbody radiation is given by $u = 4\sigma T^4/c$, where σ is the Stefan-Boltzmann constant. Assuming the temperature of the CMB today is $T_{CMB} = 2.73K$ and the critical density today is $\rho_{crit} = 0.921 * 10^{-29} h_{70}^2 g cm^{-3}$.

a. What is the energy density of the CMB? What is the corresponding Ω_{CMB} ? [6]

b. What are the typical photon energies of the CMB, and the corresponding number density of photons per cm^3 ? [6]

c. Assuming $\Omega_{CMB} = 0.3$ what was the redshift z_{eq} of the transition from the radiation dominated to the matter dominated universe? [7]

d. Assuming the age of the universe at the epoch of decoupling to be 380,000 years, and knowing its redshift, estimate the ate at z_{eq} . You can assume the expansion laws appropriate for an $\Omega = 1$ universe. [8]

e. How old was the universe at the time when the temperature was comparable to the temperature in the Solar core, $T_c = 1.5 * 10^7 K$? [5]

f. What were typical photon energies then? [5]