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USAAAO 2015 Second Round Solutions 

Problem 1 
T = 10000 K, m = 5, d = 150 pc 
m M = 5 log(d/10) 
M = m 5 log(d/10) = 5 5 log(15) = 0.88 
We compare this with the absolute magnitude of the sun, 4.83. 
     L     = 100(4.83−−0.88)/5 = 192Lsolar

 
solar 

From the Stefan-Boltzmann Law, L = 4πR2σT 4 
Finding the ratio with the sun, we get: 

     L     =
 
    R      

 2  
     T      

 4
 

     R     =
  

    L     
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= 4.6R 

Rsolar Lsolar T solar 

 

Problem 2 
T = 3 days, K = 50 m/s, M = 1Msolar 

T 2 = a
3

 

  3    2/3 
365 

For the star’s orbit: 
T = 2πr 

Tv 5 
2π 

Relating the two, we have: 

m∗r∗ = mprp, so we have mp = r∗ m∗ 

Plugging in, we find mp = 3.36 ∗ 10−4Msolar 

Problem 3 

Solar rotation rate 24.5 days, MJ = 9.54 10−4Msolar, a = 5.2 AU, solar 
radius 695,000 km. 

L = Iω 

Lsolar = 2 MR2 ∗  2π  = 5 ∗ 1010
 

For Jupiter, L = mrv 
r = 5.2 ∗ 149.6 ∗ 106 = 7.77 ∗ 108km 
v = 2πr = 1.13 ∗ 106 km/day. 

5.22/3  365 

L = 9.54 ∗ 10 4 ∗ 7.77 ∗ 108 ∗ 1.13 ∗ 06 = 8.38 ∗ 1011 
So Jupiter has the greater angular momentum. 

 

Problem 4 
m = 10, T = 6000 K at the main sequence turnoff. 
Oldest main sequence stars are 6000 K, which is approximately sun-like. We 

therefore assume the absolute magnitude of the stars at the turnoff point is 4.83. 
m M = 5 log(d/10) 

d = 10  10(m−M)/5 = 108pc 
The stars at the turnoff point are sunlike,  so we expect them to have a 

lifetime of 10 Gyr. Since these are the oldest main sequence stars in the cluster, 
the cluster has an age of approximately 10 Gyr. 
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Problem 5 
Question not graded 

 

Problem 6 
m = 8, p = 0.003”, and T = 6000 K. 
d = 1/p = 333pc 
m M = 5 log(d/10) 
M = m 5 log(d/10) = 0.385 
     L     = 100(Msolar −M )/5 = 59.9Lsolar 

solar 

The star’s temperature is approximately sunlike, suggesting class G, but it 
is significantly more luminous, suggesting a giant. G0III would be a reasonable 
possible spectral type. 

 
Problem 7 
From Wein’s Law, λ = b . From the definition of Redshift, z = λ−λ0 , where 

T λ0 

λ0 is the emitted wavelength. Solving for λ0, we get λ0 = λ/(z + 1) 
Combining this with Wein’s Law, we get: 

b  (z+1) 
lambda 

Using Wein’s Law and the given temperature of 2.73 K, we find that the 
recieved wavelength is 1.06 mm. Plugging this into the above expression, we 
obtain at temperature of 30.03 K for z = 10. 

 

Problem 8 
At blackbody equilibrium, power in is equal to power out, so we have: 
Pout = 4πR2σT 4 

p p 
    L 2 4πR2 σT 4 

 
 Pin = A ∗ (1 − α) ∗ 4πD2 = πRp(1 − α) 

Pin = Pout 

∗ ∗ 
4πD 

2 4 2 4πR2 σT 4 
 

 4πRpσTp   = πRp(1 − α) ∗ ∗ 
4πD 

4 4 R2
 Tp  = (1 − α)T∗ ∗ 

4Dq 

 

Problem 9 
7.2 micron pixels, f/10, D = 0.256 m. 
f/10, so focal length is 2.56 m. 
Angular resolution is given by  pixelsize 

 
 
∗ 206265 

Plugging in, we get a resolution of 0.58 arcseconds/pixel 
 

Problem 10 
A Hohmann transfer orbit is being used to go from the 1 AU orbit of the 

Earth to Saturn’s orbit at 9.6 AU. The semimajor axis of the transfer orbit is 
thus 5.3 AU. 

Using the vis-viva equation, v − µ = − µ , this corresponds to a velocity of 
40,080 m/s at the Earth’s orbital distance. 

2 

2 

Tp = (1 − α)1/4T∗ 
R∗ 

2D 
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When it starts, however, the spacecraft is already in Earth parking orbit, so 

benefits from both its orbital velocity around the Earth and the Earth’s orbital 
velocity around the Sun. 

When in the parking orbit, the probe has a maximum velocity relative to 

the Sun of 
q 

GMe   + 
q 

GMs    = 37540m/s 

The difference between the spacecraft’s current maximum velocity relative 
to the Sun and the orbital velocity of the transfer ellipse is equal to the required 
∆v, since we’re neglecting further attraction from the Earth. The necessary ∆v 
is thus 2550 m/s, and the burn must occur on the night side of the Earth in 
order to increase the orbital radius and match Saturn’s orbit (since the parking 
orbit is prograde). 

We use the vis-viva equation again to calculate the probe’s velocity at Sat- 
urn’s orbital distance, and compute Saturn’s orbital velocity using the same 
technique we used for Earth. We then subtract Saturn’s velocity from the 
probe’s velocity to find the probe’s velocity relative to Saturn. 

We then calculate the velocity relative to Saturn for a 100,000 km circular 
orbit. The difference between this value and the value above is the ∆v required 
to make Saturn orbit, coming out to 24900 m/s. The burn must occur on the 
night side of Saturn in order to enter a prograde orbit. 

 

Problem 11 
M = 0.54Ms, P = 6 years, perihelion distance 0.537 AU, parallax 0.05”. 
From the parallax equation, d = r/θ, where d is the distance, r is the baseline, 

and θ is the parallax angle. We therefore need to find the baseline, XY, which 
is the latus rectum of the ellipse. 

Using Kepler’s Third Law, we find that the semimajor axis is 2.69 AU. This 
corresponds to an aphelion of 2.135 AU, and therefore an eccentricity of e = 
0.3. 

The latus rectum of an ellipse is given by l = a(1    e2). Plugging in, we get 
l = 2.45 AU, yielding a distance d = 49.0 pc 

 

Problem 12 
Simply dividing the length of the year by 6 is incorrect. Because of the 

inclination of the Earth, the Sun also varies in declination (from -23.5 to +23.5 
degrees), but maintains (for this problem) a constant angular velocity. Spherical 
trigonometry is therefore required to determine the actual angle that the Sun 
traverses going from 0 to 4 hours (62.1 degrees). Since the Sun has constant 
angular velocity, traversing 360 degrees per year, the number of days can be 
expressed as (62.1/360)*365 = 63.0 days. 

 

Problem 13 
This question also requires spherical trigonometry. Picking RA = 0, Dec = 

90 is likely the easiest third point. Now that we have a spherical triangle, we 
can use the spherical law of sines or cosines to find the separation angle (18.59 
degrees). 
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The position angle is measured east of north. For our chosen triangle, this 

corresponds to the angle with Betelgeuse as its vertex. Again applying the 
spherical trigonometric relationships, we find the position angle to be 33.12 
degrees. 

To cover both stars, the picture must cover 18.6 degrees of the sky, which 
corresponds to 66960 arcseconds. Plate scale, in arcseconds/mm, is given by 
206265/focal length. Solving for the focal length, we get a value of 3.08*film 
size, which is a focal length of 108 mm on 35 mm film or 216 mm on 70 mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	USAAAO 2015 Second Round Solutions Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6
	Problem 7
	Problem 8
	Problem 9
	Problem 10
	Problem 11
	Problem 12
	Problem 13

