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Problem 1. Lagrange Points
The Lagrange points are the five positions in an orbital configuration (assume circular orbits), where a
small object is stationary relative to two big bodies, only gravitationally interacting with them- for example, an
artificial satellite relative to Earth and Moon, or relative to Earth and Sun. In the Figure 1 are sketched two

possible locations of Lagrange points L, relative to relative to the Earth — Sun system . Find out which of the two

locations L31 and L% could be the real Lagrange point relative to the system Earth — Sun; show the reason for your
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answer with appropriate equations and calculate the difference between one AU and Sun - L, distance . You know
the following data: the Earth - Sun distance d., =14.96-10" kmand the Earth — Sun mass ratio

M. /Mg =1/332946
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Problem 1. Marking scheme Lagrange Point

1.
According to the notations in fig.1.1 and fig. 2.1
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s P o ( PS ) ................................................................................................... 2 points
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The value has to be positive, thus the L7 is the position of one Lagrange point .................c..... 2p
W R 744 KIM e b bbbt b et b et b ettt n s 2p
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Problem 2. Sun gravitational catastrophe!

In a gravitational catastrophe, the mass of the Sun mass decrease instantly to half of its actual value. If you

consider that the actual Earth orbit is elliptical, its orbital period is T, =1 year and the eccentricity of the Earth

orbitis e, =0.0167.
Find the period of the Earth’s orbital motion, after the gravitational catastrophe, if it occurs on: a) 3rd of

July (aphelion) b) 3rd of January.

Problem 2. Marking scheme Sun gravitational catastrophe!

- Correct analyze of the initial conditions when the catastrophe occurs ( A) 5 points
- Correct calculations (B) 5 points
o Correct use of laws of conservation 2 points

o Finding out that in the first case the orbit will be elliptic, relations (1)
and (2) 2 points
o Correct conduct of calculations 1 point

Detailed solution

(A) The orbit of Earth is elliptical, so the shape of the orbit after the solar catastrophe will depend on
the moment when the decrees of the mass of the Sun will occur.
For following explanation
a) In 3" July the Earth is at the aphelion. The speed of the Earth is smaller than the speed
of Earth on a circular orbit with radiusr,, . =a,(l+e, ).

1p
b) In 3" January the Earth is at perihelion. The speed of the Earth is bigger than the speed
of Earth on a circular orbit with radiusr, ., =a,(1-e,). 1p

According to Keppler’s second law and the law of energy conservation the following relations can be
written :

VO,per r.O,per = VO,aph rO,aph; 1p
2 2

VO,per K Mo _ VO,aph K Mo
2 r‘O,per 2 rO,aph

1p
r.O,min = rO,per = aO(l_ eO)

Fo.max = To.aph = @0 1+eo)
KM, =Vvir, =V2a,

L
r0 aO
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Vo, =V L+e, >V

O,per — Y0 l—e 0

0
VO,per > VO (1)
v v 1-¢,
,aph

o 01 1e,

VO,aph <V (2)

Conclusion — According to the relations (1) and (2) the new orbit of the Earth could be an elliptic one. 1p

For the new elliptical Earth orbit:

Foer = Vo,aphs
Min = Foer =a(L—€);
a,1+e,)=all-e) a=a, 11+ %.
—e
Voer = Voaphs
v —v | te
P T 1—e’

Where v este is the Earth’s speed on a circular orbit with the radius r = a, when the mass of the Sun becomes
M=M,/2

V.| =V, ,
1-e 1+e0 1p

1+e
e=1-2e,; a=a,—".
2e, 1p
Conclusion
T - 2mr, _ 2ma,
VO VO
;2w _2m,
% %
T av, l+e, |2a _1+e0\/§ 1+e,.
T, a, v 2 \a, 2 2, Ip

3/2
T=T, \/5(1;;0 J ~ 238 years

0

1p

b) In 3" of January the Earth is at perihelion. In that moment the Erath speed is larger than the speed
necessary for an Earth’s circular orbit. Thus the trajectory of the Earth after the catastrophe will be an open
trajectory, i.e. an hyperbolic or parabolic orbit.

Conclusion it is not necessary to calculate the period of revolution or could be issued as infinite

1p
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Problem 3. Cosmic radiation

During studies concerning cosmic radiation, a neutral unstable particle —the 77° meson was identified. The
rest-mass of meson 7° is much larger than the rest-mass of the electron. The studies reveal that during its flight, the
meson 7° disintegrates into 2 photons. In a particular case, one of the created photons has the maximum possible
energy E, . and, consequently, the other one has the minimum possible energy E ;. .
Find an expression for the initial velocity of the meson 7° _asafunctionof E , and E_; . Youmay use

as known c - the speed of light and the relation between the energy and momentum of any relativistic particles

E? = p°c® + mic*

Problem 3. Marking scheme Cosmic radiation

- Correct use of general laws of conservation (A) 5 points
- Correct applying of the laws of conservation for the conditions stated

in the problem (B) 4 points
- Correct conduct of calculations and final solution (C) 1 point

Detailed solution

(A) 5 points

In the disintegration process the laws of energy conservation and the law of the conservation of momentum
are both obeyed.

In the general case the law of conservation of the momentum is represented in the down below figure.

p

mesone 1"

the total initial energy of the z° meson is
E? = p*c® + m¢c*

1p
And its kinetic energy is
E. =E-m,c?
The expressions of the 2 conservation laws written after the disintegration are:
ﬁ = pl + r)z; 1p
E,+m,c’ =E +E,, 1p

The energy of the photon 1 can be calculated using the notations in the figure
p,siné, = p,siné, _
p=p,Cosé, +p,cosb,|
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Esin¢9l =Esin 0,;
C C 1p
pzcz — E2 —m§c4;
E=E +E,;
m,’c* 1

2 E, +m,c? -cosb,E,(E, +m,c?)

Similar the second photon energy is:
_ my°c’ 1

2 E_ +m,c? —cos,,/E,(E, +m,c?)
(B) 4 points

If one of the photon has the maximum possible energy E ., and consequently the other photon has the
minimum possible energy E .. the law of momentum conservation is sketched:

E,

1p

0
T ? f2 fl
® > < ® L >
m —e —
Prin Prax 2p
Thus the relations become very simple:
myv = m0V2 — Emax — Emin : 1p
Vi c
c
, My’
mc- = 2 = Emax + Emin 1p
e
V=CEmax_Em|n . 1p
Emax + Emin

Problem 4. Sandra Bullock And George Cloony
An astronaut, with mass M =100 kg, gets out of the space ship for a repairing mission. He has to repair a

satellite at rest relative to the space ship, at about d=90m away from it. After he finishes his job, he realizes that

the systems designed to assure his come-back to shuttle are broken. He also observes that he has air only for 3
minutes. He also notices that he possessed a sealed cylindrical can (base sectionS=30cm?) firmly attached to
his/her glove, with m = 200 g of ice inside. The can is not completely filled with ice.

Determine if the astronaut is able to return safely to the shuttle, before his air reserve is empty, if he

manages to open the can in correct direction. Briefly explain your calculations. Note that he cannot throw away
anything of its equipment, or touch the satellite.
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You may use the following data: T =272 K/ the temperature of the ice in the can, p, =550 Pa- the

pressure of the saturated water vapors at the temperature T = 272 K; R =8300 J/(kmol- K) - the universal gas

constant; p =18 kg/lkmol - the molar mass of the water.

Problem 4. Marking scheme The Astronaut saved by ... ice from a can!

- A For the use with an adequate justify of one of the relationships (4) 3 points
- B. Reasoning The student describe correctly the processes before and after

the can is opened. 4points
- C. Calculations according to the reasoning, and/or as support for reasoning 2 points
- D. Correct result 1 point

Detailed solution

Theoretical considerations:

1 1
d==.5.5.V=".
6 * 6

35
»
I

= 3p

B. Reasoning
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Because the cylindrical can is not full of ice, in the empty part of it there are saturated vapors, i.e the mass flux of
the molecule which sublimate is equal with mass flux of gass which transform into ice. Thus the pressure in the

can is the saturated vapor pressure p, and it has the corresponding maximum density p. See figure 6.2

@ i >

vapori saturati
(Dz\l/ Ps Tqal p.i2 T‘Dl

gheata
da b
~ -
Fig. 6.2
O, =0, .
1 _ 3u
cI)1 =q)sublimation = 6,05 -S 'V:g' P -S. ﬁ’

1 1 [3u .
o, ZCDsolidiﬁcetion:E'ps's'vzg' p,-S- ﬁ,

After the can was opened, there will be no molecules which desublimate thus the mass flux of the
molecules which gather the ice become null. So the pressure becomes (p, /2).

2p
C. Calculations according to the reasoning, and/or as support for reasoning
F=Ps,
2
-2 -4 2
_iz P, -S _ 550 Nm 320 107" m — 0,00825 ms-2.
M 2M 2-10° kg 1p

The total time of the acceleration movement will be the total time of ice sublimation:

s= M _ m __6m /ﬂz1503. 1p
f.ps.s. It
6 \RT

D. Correct result 1p
The travel distance in this time will be :

ar® 0,00825ms™.225-10° s

2 2
The astronaut could arrive safely in at the shuttle if he didn’t lose to much time by solving the problem.

L= ~93m,
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Problem 5. The life —time of a main sequence star
The plot of the function log(L/L, )= f(log(M/M)) for data collected from a number of stars is
represented in figure 2. L and M are the luminosity and the mass of a star respectively and Ly and Mg the

luminosity and the mass of the Sun respectively.

4 » .
z(
3> %
UA
2 L
oA
log— 1 » =
: 5
0»
V/
—1 /(4
A
_0,5 O 0,5 ]-aO
lo M
g M.
Figure 2

Find an expression for the main sequence life- time for a main sequence star from Hertzprung — Russell

diagram, as a function of mass fraction converted to energy n and mass ratio to the solar mass n, Use the following

assumptions: the time spent by Sun in the same Main Sequence isz, for each star the mass fraction which

changed into energy is m, the percent of the mass of Sun which changes into energy is 1, the mass of each star is

expressed as n =—— and assume that luminosity of the star remains constant, during its main sequence life time.
S

Problem 5. Marking scheme The life —time of a star from the main sequence
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A. The analysis of the graph :
The graph is linear:
y =ax+b=ax 1p 0 » "
From the graph it can be obtain z“(
the following data:

IogL—a-Iogﬂ %
Ls Ms 1p 0 ‘(

a=tana:ﬂ=§=3,5; "L 2
AX 1 1p 09 \\

]

A 4

L~M?3*. 1p 0

N

1p 3 »
The total energy of the star is:

2 ‘ ‘ A \
E =Mc, 0.5 0 0,5 0 log—
So the emitted energy due to the T M,

mass variation of the star is:

AE =C*AM,
According to the text

1p
AM =1M;

AE =c’;M.

By using the definition of the luminosity :

AE
—=L; 1
At P

1p

c’nM
, (2
1 )

Which represents the life-time of the star.

T =

1p

By using the results from the graph analysis
ML§5 ‘M 3'51

S

L=
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If use the same calculations for the Sun it can be obtain
E, =M%

C2775Ms

S ==
LS
Which is the life-time of the Sun

r=2 M2 M2,

s

Problem 6. The effective temperature of a star

From the radiation emitted by a star, two radiations with wavelength values in a narrow range AA << A are

studied, i.e. the wavelength have values between A and A+ AL . According to Planck's relationship (for an

absolute black body), the following relation defines, the energy emitted by star in unit time, through a unit area of
its surface, per unit wavelength interval:

27hc?

hc )
f’(ekﬂ —1J

The spectral intensities of the radiation with wavelengths A, and respectively A,, both within the range
AX measured on Earth are 1,(),) and Iz(ﬂz) respectively.

r =

Find out the relation between wavelength 4, and 4,, if Il(ﬂi): ZIZ(XQ), when hc << AKT.

Here: h—Planck’s constant; K —Boltzmann’s constant; C—speed of light in vacuum.
e*=1l+x if x<<1
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3points
a. We start from the definition of r;
r= AE = AE2 where R is the radius of the star
At-Sg., AL At-4nR° - AL
B 2rhc?
- A8 (ehe/keT _q

3p
Considering d as the distance from the star to the Earth, the definition- relation of the spectral intensity can
be written as follows:

AE

( ) 4nd?
( ): 27'ChC2R2 .
d2)8 (ehc/ka _1)’

1p
Particularly for each wavelength:
27hc’R* 27c’R®
|1(21): dzﬂf(ehclzikT _1)’ |2( 2): dzﬂg(ehclﬂqkT _1)’

The ratio of the 2 above relations

Il(}\ul) :(&JS . ehc/MkT -1

|2(7L2) A ehe/mkT _q (D)

Represents an equation which allow to find out the temperature of star’s surface T by using spectral
measurements

1p
b. If NC<<AKT, then:
NC g grernit g9, NG 4 RC
kAT kr, T kr, T
e g gnemmar g9, NC 4 he
kAT kr,T kn,T
1p
The relation (1) becomes:
hc
5 4
L) (2, KT (R
|2(7“2) }\‘1 & }\“1
ki, T
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|, =21,; (%j =22, =4-42~12-4.

Problem 7.  Pressure of light

For an observer on Earth the pressure of the radiation emitted by Sun is p,4s and the pressure of the
radiations emitted by a star X is P,y -

Calculate the visual apparent magnitude of the star X if the apparent visual magnitude of the Sun is mg.
The following assumption may be useful for solving the problem:

Generally, the pressure of the electromagnetic radiation in vacuum is equal to the volume energy density of

the electromagnetic radiation (prad = %) :

The following data are known: Mg - the mass of the Sun, Rq- the radius of Sun, G - universal

gravitational constant; o Stefan - Boltzmann’s constant ; C— speed of light in vacuum

Problem 7. Marking scheme . Pressure of light

2p
q)E,LEZ
Pogson law log ——= = -0.4(m; —my)
Sles
o= N
S-t
2p
E
Q =—* —-0o.T*
planet star -t = Lstar =0 T 47R star
Ee = Pemisstar = Lstar
2p
At distance L the energy flux of the star
(Dstarl_ _ Estar -9 GT4F§25tar
’ S-t L

2 p the pressure emitted by star
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F_E _of'R?

p — — € star

S AV cl?

2p
log Psiar _ —0,4(my —m,);

pSUN

m; :ms—2,5-logM.

sun

Problem 8. Space — ship orbiting the Sun
A spherical space —ship orbits the Sun on a circular orbit, and spin around an axis of rotation that is
perpendicular to the orbital plane of the space-ship. The temperature on the exterior surface of the ship is T .

Assume the space -ship is a perfect black body and there is no activity inside it .
Find out the apparent magnitude of the Sun and the angular diameter of the Sun as seen by the astronaut on
board of the space — ship. The following values are known:, T - the effective temperature of the Sun; Rj - the

radius of the Sun; d, - the Earth —Sun distance; m, - apparent magnitude of Sun measured from Earth; R - the
radius of the space —ship.

Problem 8. Marking scheme Space — ship orbiting the Sun

According to the Stefan — Boltzmann law, the luminosity of the Sun is:
I-sun = qun ) 47ZR52un = GTS‘Ln : 4ﬂRSzun’ 1p
At distance d from the Sun, where the space ship is the energy which passes the unit of surface in an unit of time
is:
Ly oTg -4nR3

¢Sun,d=4ﬂd2_ 47Zd2 ) 1p
The space ship receive through its entire surface, in the unit of time, the energy:
ol e 47RZ N
Preceived = W : ﬂRszhip'

Corresponding to its temperature, T, according the Stefan - Boltzmann law, the emitted energy by
starship through its hole surface in the unit of time :
P = o-T,\‘,1 -47zR,f, .

emis,N 1p
When the temperature stabilized at thermic equilibrium :
Preceived,n = Pemis,n
%-m,ﬁ =oTy - 4R’ 1p
the distance of orbiting the Sun of the space ship is:
d= T52 Rs
212’ 1p

The angular diameter of the Sun as seen from the space ship :
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RS
@y 1p
2
2R, (T
“T (TSJ 1p

According the Pogson formula written for Sun seen from Earth and space ship the following relation
occurs:

E
lg =% = -0,4(m—m, ) 1p
S,P
2.1g( %2 =0 4(m-m,)
g d - J 0 1p
The apparent magnitude of the Sun as seen from the space ship
2d,T:

m=m, -5 -1
0 g RSTSZ lp

Problem 9. The Vega star in the mirror
Inside a camera a plane mirror is placed along the optical axis of the objective (as shown in figure). The
length of the mirror is half the focal length of the objective. A photographic plate is placed at the focal plane of the
camera. Two images with different brightness are captured on the photographic plate (as shown in figure). The star

Vega is not on the optical axis of the lens. The distance between the optical axis and the image X, is r Find the

difference between the apparent photographical magnitudes of the two images of the star Vega.

VEGA Photographic
star plate aj&
Lens
objective 172 22
_____________________7 _____________ ’;; bl }ﬂ
! A ~——
) Plane mirror #-' 2
3T 2,
f
Figure

Problem 9. Marking scheme The Vega star in the mirror
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The light beam arriving from Vega Star can be considered paraxial, due to the distance from it to the
observer on Earth. The explanation for the existence of two distinct images of the star is that the optical axis of the
objective is not parallel with the light beam from the star.

The images on the camera plate are symmetrical placed relative to the principal optical axis.

2p

Each of the point images of the Vega Star X%, and X, didn’t concentrate the same light fluxes. In the
down below figure it can be seen the sections of the lens which correspond to each image. The sector APBC is
passed by the light which concentrates in the image 2, and the light passing the sector ACBQ concentrates into

the point image X, See the picture in figure 13 .
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Fig.13 b 2p

The ratio between the light fluxes concentrated into the two image points will directly depend on the ratio
of the two sectors areas.
From the geometry of the figure 2 results :

MN:OM;NZl:OC:%;

#(CB0O)=30°; £(BOC)=60°; Z(AOB)=120;

S, _87+3V3 _,
S, 4r-3J3
2p
Using the Pogson formula :
ol -4mRe .
47?2 !
log 5. log 4ﬂd Vo =-04(m -m,)
E, ol -4k, S
4ndl,
Sl .
log =% = —0,4(m, —m,);
S,
m, —m, =15".
2p

Problem 10. Stars with Romanian names
Two Romanian astronomers Ovidiu Tercu and Alex Dumitriu from Galati Romania, recently discovered
two variable stars. The galactic coordinates of the two stars are: GalatiVl(Il =114.371";b, =—11.35°) and
Galati V2 (I, =113.266°; b, = —16.177").

Estimate the angular distance between the stars Galati V1 and Galati V2

Problem 10. Marking scheme Stars with Romanian names
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Galactic North Pole

p——
-
-
-

galactic
. equator

Nodul Galactic .
ascendending node, <", _
of the North Pole”

r

In the figure bellow the two starso, and o,, are located using the galactic coordintates (I;b,) and
respectively (Iz;b2 ).on the geocentric celestial sphere. The spherical triangles o, Ao, (Il;bl) and respectively
may be considered rectangular plane triangles because the angles Al =1, —I, (Il;bl) and respectively
Ab =h, —b, are very small

Thus:
0,0, = \/(0_1 A)2 + (0_2 A)2 '
or:
0,0, = \/(0'1 B)Z + (0'2 8)2 ' 6p
o, A=r-Ab;
o,A=r,-Al=r-cosg, - Al
0,0, =r-Ag,

Where Ag is the angular distance between two stars
r-Ap=1/(r-AbY +(r-cosb, - Al };

Ag =/(Ab)? +(cosb, - Al
o,B=r-Al =r-cosb, -Al,

A =+(cosl, - AbY +(Al); 20
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(I, =114.371°;b, =—11.35 } (I, =113.266°; b, = —16.177 ),
Al =1, -1, =-1105"; Ab=b, —b, =—4,827";
cosl, =0.98 cosl, =0.96

Ap=+/(-4827° ) +(0.96) -(-1105"f ~4,942°;

Ap=+/(098) -(-1105° ] +(-4827°f ~4,946",
The angular distance between Galati V1 and Galati V2. 20

Problem 11. Apparent magnitude of the Moon

The apparent magnitude of the Moon as seen from the Sun is M,, =0.25"

Calculate the values of the apparent magnitudes of the Moon (as seen from the Earth) corresponding to the
following Moon — phases : full-moon and the first quarter. Assume: the Moon — Earth distance -

d,e =385000 km, the Earth — Sun distance - d. =1AU, the Moon —Sun distance, d,,; =1AU . For

terrestrial observers, following phase factor must be used to correct the lunar brightness for curvature of lunar

surface and phase of the moon

2 v 1.
p(‘P) = § . [[1——) cos¥ +—sin ‘P} where W is the phase angle.
V4 V4

Problem 11. Marking scheme Apparent magnitude of the Moon

1. General analysis of the problem 6 points
2. The analysis of the 2 particular situations 4 points

The apparent magnitude of a planet from the Solar System depends on the phase angle M =M (‘P)

The apparent magnitude of the body is given by the relation:
2 2

dég-d
m=M +25-log—>—<=5

do ’ p(‘P)’
unde: dy s —the distance between the body and the Sun; dg, —distance between the body and observer;
d, =1AU; ¥ —the phase angle ; p(‘P)—the phase function :

p(¥)= % : Kl—%jcos? +Lsin ‘P}

T
W as seen in the figure bellow is given by the cosine law.
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The body fro
p Solar System
____________ B.S
_______ _:'-______-:/.
\\\li] ,//
Observer /z/z/
/// dB:O

Fig.

déo'+d§s"dés_
2dBo'st

cosY =

In particularaly for the Moon

d§E+dés_dés.
2dME'dMS

p(¥)= % : Kl—z)cos‘{’ +Lsin ‘P};

T T

cosY¥Y =
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2 2
m, =M, +2,5-log—2s M
Y G p()
Particular cases:
1) Full moon
Y =0;
cos¥ =1 sin¥=0;
2
p(¥)=3;

d,s =1AU; d,,. =385000 km ~0,00256 AU = 256-10"° SU; d, =1SU;

m,, =M,, —-12,5™ =0,25" -12,5™ =-12,25".
2) First Quarter
Y =90,
cosW¥=0; sinW¥ =1,

p(¥)= 2 02
3

dys-Oye 65536-107°

= 491520-10°";
di-p(¥) 02

m, =M,, —10,75" =0,25" —10,75" =—10,5".

Problem 12. Absolute magnitude of a cepheid

The cepheids are variable stars, whose luminosities vary due to stellar pulsations. The period of the

oscillations of a cepheid star is:
P =27R, /i
GM

where: R —the mean radius of the cepheid; M —the mass of the cepheid (remains constant during oscillation),
you can assume that the temperature is constant during the pulsation;

Express the mean absolute magnitude of the cepheid M in the following form:

cep!?

m 10"
M, =-25 -Iogk—(?j -log P,

where P is the period of cepheid’s pulsation.

Problem 12. Marking scheme Apparent magnitude of the Moon

P—2mR |,
GM

rezults
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23 2 1/3
ne _47°R ;R:3/K|v||=2> (KM s,
KM A Az

The absolute brightness is:

L =0T -47R%, 1.5p
And the apparent brightness :
= ot o 4R 15p

cef — 2 2
47Zd P,cef 47Zd P,cef

d, ¢ is the distance between the observer on Erath and the cepheide

2/3
ol ~4;z~(KMj P

cef 2
Az
E. = 1
47 i

Similarly for Sun
Ls o-TS4 -47zR§

= = 1
Tl 4k P
By using the Pogson formula:
E
log ELE“ =-0,4(m_, —m,), 1p
S
m ‘ P,cef Ecef
M. =M;—-5"log————-2,5-log—==- 1p
| PS| Es
\ KM 3/2 ;
Tcef 2 dPS
A
=k, =constant; 1p

d
M, =M -5" Iog‘ Pes —2,5-Iogkl—9-logP;
[des| 3
‘chef‘
M;—5"log————2,5-logk, =-2,5-logk;
[des|

k =constant;
M. =—2,5-logk —E-Iog P
3
1p



