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Problem 1.  Lagrange Points 

The Lagrange points are the five positions in an orbital configuration (assume circular orbits), where a 

small object is stationary relative to two big bodies, only gravitationally interacting with them- for example, an 

artificial satellite relative to Earth and Moon, or relative to Earth and Sun. In the Figure 1 are sketched two 

possible locations of Lagrange points 
3L  relative to relative to the Earth – Sun system . Find out which of the two 

locations 
1

3L and 2

3L  could be the real Lagrange point relative to the system Earth – Sun; show the reason for your 

answer with appropriate equations and calculate the difference between one AU and Sun - 
3L distance . You know 

the following data:  the Earth - Sun distance km1096.14 7

S  dE  and the Earth – Sun mass ratio 

332946/1/ S MM E  

 
 

  

 

 

Figure 1A Figure 1B 
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Figure 1 b 

 

 

Problem 1. Marking scheme Lagrange Point 

1.  
According to the notations in fig.1.1 and fig. 2.1  
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The value has to be positive, thus the "

3L  is the position of one Lagrange point  ........................ 2p 

Kmw 44.37  ............................................................................................................................. 2p 
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Problem 2. Sun gravitational catastrophe!  

In a gravitational catastrophe, the mass of the Sun mass decrease instantly to half of its actual value. If you 

consider that the actual Earth orbit is elliptical, its orbital period is year T 10   and the eccentricity of the Earth 

orbit is .0167.00 e   

Find the period of the Earth`s orbital motion, after the gravitational catastrophe, if it occurs on: a) 3rd of 

July (aphelion) b) 3rd of January.  

Problem 2. Marking scheme Sun gravitational catastrophe!  

 

- Correct analyze of the initial conditions when the catastrophe occurs ( A)  5 points 

- Correct calculations (B) 5 points 

o Correct use of laws of conservation 2 points 

o Finding out that in the first case the orbit will be elliptic, relations (1)  

and (2)   2 points 

o Correct conduct of calculations  1 point  
 

Detailed  solution 

 

(A) The orbit of Earth is elliptical, so the shape of the orbit after the solar catastrophe will depend on 

the moment when the decrees of the mass of the Sun will occur.  

For following explanation  

a) In 3
rd

 July the Earth is at the aphelion. The speed of the Earth is smaller than the speed 

of Earth on a circular orbit with radius  .1 00max,0 ear  .  
1p

 

b) In 3
rd

 January the Earth is at perihelion. The speed of the Earth is bigger than the speed 

of Earth on a circular orbit with radius  .e1ar 00max,0  .  1p 

 

According to Keppler’s second law and the law of energy conservation  the following relations can be 

written : 
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0
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Conclusion – According to the relations (1) and (2) the new orbit of the Earth could be an elliptic one.    1p 

 

For the new elliptical Earth orbit: 
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Where  v este is the Earth’s speed on a circular orbit with the radius ,ar   when the mass of the Sun becomes
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b) In 3

rd
 of January the Earth is at perihelion. In that moment the Erath speed is larger than the speed 

necessary for an Earth’s circular orbit. Thus the  trajectory of the Earth after the catastrophe will be an open 

trajectory, i.e. an hyperbolic or parabolic orbit.  

 

Conclusion it is not necessary to calculate the period of revolution or could be issued as infinite 

1p  
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Problem 3. Cosmic radiation  

During studies concerning cosmic radiation, a neutral unstable particle – the 
0 meson was identified. The 

rest-mass of meson 
0 is much larger than the rest-mass of the electron. The studies reveal that during its flight, the 

meson 
0 disintegrates into 2 photons. In a particular case, one of the created  photons has the maximum possible 

energy 
maxE  and, consequently, the other one has the  minimum possible energy minE . 

Find an expression for the initial velocity of the meson
0 , as a function of 

maxE  and
 minE . You may use 

as known c - the speed of light and the relation between the energy and momentum of any relativistic particles  

42

0

222 cmcpE   

Problem 3. Marking scheme Cosmic radiation  

 

- Correct use of general laws of conservation (A) 5 points 

- Correct applying of the laws of conservation for the conditions stated   

in the problem (B) 4 points 

- Correct conduct of calculations and final solution (C) 1 point 
 

Detailed solution 

 

(A) 5 points 

In the disintegration process the laws of energy conservation and the law of the conservation of momentum 

are both obeyed.  

In the general case the law of conservation of the momentum is represented in the down below figure. 

 
 

the total initial energy of the 
0 meson is  

42

0

222 cmcpE 
  1p

 

And its kinetic energy is  
2

0c cmEE   

The expressions of the 2 conservation laws written after the disintegration are: 
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 The energy of the photon 1 can be calculated using the notations in the figure  
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;sinsin 2
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  1p 

;42

0

222 cmEcp   

;21 EEE   

 
.

cos

1

2 2

0cc1

2

0c

42

0
1

cmEEcmE

cm
E





 

Similar the second photon energy is: 
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(B) 4 points  

If one of the photon has the maximum possible energy 
maxE  and consequently the other photon has the 

minimum possible energy minE the law of momentum conservation is sketched: 

  

. 2p 

Thus the relations become very simple: 
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Problem 4. Sandra Bullock And George Cloony  

An astronaut, with mass kg,100 M  gets out of the space ship for a repairing mission. He has to repair a 

satellite at rest relative to the space ship, at about  m 90d   away from it. After he finishes his job, he realizes that 

the systems designed to assure his come-back to shuttle are broken. He also observes that  he has air only for 3 

minutes. He also notices that he possessed a sealed cylindrical can (base section
2cm 30S ) firmly attached to 

his/her glove, with g200 m  of ice inside. The can is not completely filled with ice. 

Determine if  the astronaut is able to return safely to the shuttle, before his air reserve is empty, if he 

manages to open the can in correct direction. Briefly explain your calculations. Note that he cannot throw away 

anything of its equipment, or touch the satellite.  
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You may use the following data: K 272T  / the temperature of the ice in the can, Pa 550ps  - the 

pressure of the saturated water vapors at the temperature K 272T  ; K)J/(kmol 8300R  - the universal gas 

constant; kg/kmol 18  - the molar mass of the water.  

Problem 4. Marking scheme The Astronaut saved by … ice from a can! 

 
 

- A. For the use with an adequate justify of one of the relationships (4)  3 points  
- B. Reasoning The student describe correctly the processes before and after  

the can is opened.   4points 
- C. Calculations according to the reasoning, and/or as support for reasoning 2 points 
- D. Correct result 1 point 

Detailed solution 
 

Theoretical considerations: 
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B.  Reasoning  
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Because the cylindrical can is not full of ice, in the empty part of it there are saturated vapors, i.e the mass flux of 
the molecule which  sublimate is equal with mass flux of gass which transform into ice.  Thus the pressure in the 

can is the saturated vapor pressure 
sp  and it has the corresponding maximum density 

s  See figure 6.2 

 
 
 

 
 

Fig. 6.2 
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After the can was opened, there will be no molecules which desublimate thus the mass flux of the 

molecules which gather the ice become null. So the pressure becomes   .2/sp
 2p

 

 
C. Calculations according to the reasoning, and/or as support for reasoning   
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The total time of the acceleration movement will be the total time of ice sublimation: 
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D. Correct result  1p 

The  travel distance in this time will be : 
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The astronaut could arrive safely in at the shuttle if he didn’t lose to much time by solving the problem.  
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Problem 5. The life –time of a main sequence star   

The plot of the function      SS M/MfL/L loglog    for data collected from a number of stars is 

represented in figure 2.  L and M are the luminosity and the mass of a star respectively and 
SL  and 

SM   the 

luminosity and the mass of the Sun respectively. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Find an expression for the main sequence life- time for a main sequence star from Hertzprung – Russell 

diagram, as a function of mass fraction converted to energy and mass ratio to the solar mass n , Use the following 

assumptions: the time spent by Sun in the same Main Sequence is S ,
 for each star the mass fraction  which 

changed into energy is  , the percent of the mass of Sun which changes into energy is S , the  mass of each star is 

expressed as  
SM

M
n   and assume that luminosity of the star remains constant, during its main sequence  life time.  

Problem 5. Marking scheme The life –time of a star from the main sequence 

 
 

 
   

 

 

 

 

 

 

Figure 2 
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A. The analysis of the graph : 

The graph is linear:  

axbaxy   1p 
From the graph it can be obtain 

the following data: 
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1p 

The total energy of the star is: 

 

,2McE   

So the emitted energy due to the 

mass variation of the star is: 
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According to the text  

1p 
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By using the definition of the luminosity : 

 

;L
t

E





  1 p

 
1p 

 

 

;
2

L
Mc





 

,
2

L

Mc 
   (2) 

Which represents the life-time of the star. 
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By using the results from the graph analysis  
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Thus : 
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1p  

If use the same calculations for the Sun it can be obtain  
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Which is the life-time of the Sun 
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Problem 6. The effective temperature of a star 

From the radiation emitted by a star, two radiations with wavelength values in a narrow range  are 

studied,  i.e. the wavelength have values  between    and      . According to Planck's relationship (for an 

absolute black body), the following relation defines, the energy emitted by star in unit time, through a unit area of 

its surface, per unit  wavelength interval: 

.
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The spectral intensities of the radiation with wavelengths  1  and respectively 2 , both within the range  

 measured on Earth are  11I   and  22 I  respectively. 

  

Find out the relation between wavelength 1  and ,2  if    ,2 2211  II   when .kThc    

Here: h Planck’s constant; k Boltzmann’s constant; c speed of light in vacuum. 

11  xifxex  
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Problem 6. Marking scheme The effective temperature  of a star 

 

 

3points 

a. We start from the definition of r: 
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Considering d as the distance from the star to the Earth, the definition- relation of the spectral intensity can 

be written as follows: 
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Particularly for each wavelength: 
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The ratio of the 2 above relations  
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Represents an equation which allow to find out the temperature of star’s surface T by using spectral 

measurements  

1p 

b. If  ,kThc   then: 
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The relation (1) becomes: 
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4

1

2

5

1

2
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I

I












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























  

1p 
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;2 21 II   ;2

4

1

2 











.2,12 1

4
12    

 

Problem 7. Pressure of light  

 

 

For an observer on Earth the pressure of the radiation emitted by Sun is Srad,p  and the pressure of the 

radiations emitted by a star  is rad,p .  

Calculate the visual apparent magnitude of the star   if the apparent visual magnitude of the Sun is Sm . 

The following assumption may be useful for solving the problem:  

Generally, the pressure of the electromagnetic radiation in vacuum is equal to the volume energy density of 

the electromagnetic radiation 













V

E
prad  . 

The following data are known:  SM - the mass of the Sun, SR - the radius of Sun, G - universal 

gravitational constant;   Stefan - Boltzmann’s constant ; c speed of light in vacuum 

 

Problem 7. Marking scheme .  Pressure of light 

 

2 p 

Pogson law )(4.0log S

LS,

L
mm

ES

E 





   

tS

W


  

2p 

 

star
2

star

starstaremise
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e
planet

RL

LPE

tS

E
Q




4



















 

 

2 p 

At distance L the energy flux of the star  

 

2

2

, 2
L

RT

tS

E star
4

star
Lstar







 

2 p the pressure emitted by star 
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2

24

Lc

RT

V

E

S

F
p stare 





 

2p  

 ;4,0log Smm
p

p

SUN

star    

.log5,2S

sun

star

p

p
mm   

Problem 8. Space – ship orbiting the Sun  

A spherical space –ship orbits the Sun on a circular orbit, and spin around an axis of rotation that is 

perpendicular to the orbital plane of the space-ship.  The temperature on the exterior surface of the ship is 
NT . 

Assume the space -ship is a perfect black body and there is no activity inside it .  

Find out the apparent magnitude of the Sun and the angular diameter of the Sun as seen by the astronaut on 

board of the space – ship. The following values are known:, 
ST  - the effective temperature of the Sun;  

SR - the 

radius of the Sun;  
0d  - the Earth –Sun distance;  

0m - apparent magnitude of Sun measured from Earth; 
NR  - the 

radius of the space –ship. 

 

Problem 8. Marking scheme Space – ship orbiting the Sun 

 

 

According to the  Stefan – Boltzmann law,  the luminosity of the Sun is: 

,44 2

S

4

S

2

S unununsunsun RTRQL  
 1p

 

At distance  d from the Sun , where the space ship is the energy  which passes the unit of surface in an unit of time 

is: 

.
4

4

4 2

2

S

4

S

2

S
d,S

d

RT

d

L
un











 1p
 

The space ship receive through its entire surface, in the unit of time,  the energy: 

.
4

4 2

2

2

S

4

S
ship

unun
received R

d

RT
P 







  

Corresponding to its temperature, ,NT  according the Stefan -  Boltzmann law, the emitted energy by 

starship through its hole surface in the unit of time : 

.4 2

N

4

NNemis, RTP  
 1p

 

When the temperature stabilized at thermic equilibrium : 

Nemis,N, PPreceived   

2

N

4

N

2

N2

2

S

4

S 4
4

4
RTR

d

RT








 1p

 

the distance of orbiting the Sun of the space ship is:
 

,
2 2

N

S

2

S

T

RT
d 

 1p
 

The angular diameter of the Sun as seen from the space ship : 
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d

RS2/ 
 1p

 
2

S

NS 4
2













T

T

d

R


 1p
 

According the Pogson formula written for Sun seen from Earth and space ship the following relation 

occurs: 

 0

PS,

NavaS,
4,0lg mm

E

E


 1p
 

 

 0
0 4,0lg2 mm

d

d











 1p
 

The apparent magnitude of the Sun as seen from the space ship  

2

SS

2

N0
0

2
lg5

TR

Td
mm 

 1p
 

 

Problem 9. The Vega star in the mirror 

Inside a camera a plane mirror is placed along the optical axis of the objective (as shown in figure). The 

length of the mirror is half the focal length of the objective. A photographic plate is placed at the focal plane of the 

camera. Two  images with different brightness are captured on the photographic plate (as shown in figure). The star 

Vega is not on the optical axis of the lens. The distance between the optical axis and the image 1  is 
2

r
. Find the 

difference between the apparent photographical magnitudes of the two images of the star Vega.  

 

 
Figure  

 

 

 

 

Problem 9. Marking scheme The Vega star in the mirror 
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The light beam arriving from  Vega Star can be considered paraxial, due to the distance from it to the 

observer on Earth. The explanation for the existence of two distinct images of the star is that the optical axis of the 

objective is not parallel with the light beam from the star. 

The images on the camera plate are symmetrical placed relative to the principal optical axis. 

  

 

 

 
 

Fig. 12 

2p 

 

Each of the point images of the Vega Star  1  and  2  didn’t concentrate the same light fluxes. In the 

down below figure it can be seen the sections of the lens which correspond to each image. The sector APBC is 

passed by the light which concentrates in the image 2   and the light passing the sector ACBQ concentrates into 

the point image 1 See the picture in figure 13  . 
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Fig.13 b  2p 

The ratio between the light fluxes concentrated into the two image points will directly depend on the ratio 

of the two sectors areas.  

From the geometry of the figure 2 results :   

OM;MN ;
2

OCN 1

r
  

  ;30CBO    ;60BOC    ;120AOB   

 

.4
334

338

2

1 









S

S
 

2p 

Using the Pogson formula : 

 ;4,0

4

4

4

4

loglog 21
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2

V

4

V

12

PV

2

V

4

V

2

1 mm

S
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S
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E


















 

 ;4,0log 21

2

1 mm
S

S
  

.5,1 m

12 mm  

2p 

 

Problem 10. Stars with Romanian names 

Two Romanian astronomers Ovidiu Tercu and Alex Dumitriu  from Galati Romania, recently discovered 

two variable stars. The galactic coordinates of the two stars are:   35.11;371.1141VGalati 11  b l    and 

  177.16;266.1132VGalati 22  b l   . 

Estimate the angular distance between the stars  Galati V1 and Galati V2 

 

 

 

 

Problem 10. Marking scheme Stars with Romanian names 
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In the figure bellow the two stars 1  and ,2  are located  using the galactic coordintates  11;bl  and 

respectively  .; 22 bl on the geocentric celestial sphere. The spherical triangles  21 A   11;bl  and respectively  

may be considered rectangular plane triangles because the angles 12 lll    11;bl  and respectively 

12 bbb   are very small  

Thus: 

    ,AA
2

2

2

121    

or: 

    ,BB
2

2

2

121  
 6p

 

 

 

;A1 br   

;cosA 222 lgrlr   

,21   r  

Where    is the angular distance between two stars 

    ;cos
2

2

2
lbrbrr    

    ;cos
2

2

2
lbb   

;cosB 111 lbrlr   

    ;cos
22

1 lbl 
 2p
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 ;35.11;371.114 11

  b l  ;177.16;266.113 22

  b l  

;105,112

 lll ;827,412

 bbb  

96.0cos98.0cos 21  ll  

      ;942,4105,196,0827,4
222    

      ,946,4827,4105,198,0
222    

The angular distance between  Galați V1 and Galați V2. 2p 

 

.  

Problem 11. Apparent magnitude of the Moon 

The apparent magnitude of the Moon as seen from the Sun is 
m25.0MM  

Calculate the values of the apparent magnitudes of the Moon (as seen from the Earth) corresponding to the 

following Moon – phases :  full-moon and the first quarter. Assume: the Moon – Earth distance - 

km385000 dME  , the Earth – Sun distance - U dE A1S  , the Moon –Sun distance, U dM A1S  . For 

terrestrial observers, following phase factor must be used to correct the lunar brightness for curvature of lunar 

surface and phase of the moon 

  ,sin
1

cos1
3

2
















 



p where  is the phase angle.  

 

Problem 11. Marking scheme Apparent magnitude of the Moon 

 

1. General analysis of the problem   6 points 

2. The analysis of the 2 particular situations 4 points 
 

 

 

The apparent magnitude of a planet from the Solar System depends on the phase angle  . MM   

The apparent magnitude of the body is given by the relation: 

 
,log5,2

4

0

2

OC,

2

SC,






pd

dd
Mm  

unde: S,Bd the distance between the body and the Sun; O,Bd distance between the body and observer; 

AU;10  d   the phase angle ;  p the phase function : 

  ,sin
1

cos1
3

2
















 



p  

  as seen in the figure bellow is given by the cosine law. 
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Fig. 
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 
.log5,2

4

0

22

S,






pd

dd
Mm

MEM

MM  

Particular cases: 

1) Full moon 

;0  

;1cos   ;0sin   

  ;
3

2
p  

AU;1S  dM  SU;10256AU00256,0km385000 5   dME

 ;S10 U d   

 

 

.25,125,1225,05,12 mmmm  MM Mm  

2) First Quarter 

;90  

;0cos   ;1sin   

  ;2,0
3

2



p  

 
;10491520

2,0

1065536 10
10

4

0

22

S, 










pd

dd MEM
 

 

.5,1075,1025,075,10 mmmm  MM Mm  

 

Problem 12. Absolute magnitude of a cepheid  

The cepheids are variable stars, whose luminosities vary due to stellar pulsations. The period of the 

oscillations of a cepheid star is:  

,2
GM

R
RP   

where: R the mean radius of the  cepheid; M the mass of the cepheid (remains constant during oscillation), 

you can assume that the temperature is constant during the pulsation; 

Express the mean absolute magnitude of the cepheid  ,ce pM  in the following form: 

,log
3

10
log5,2

m

m

ce PkM p 







  

where P is the period of cepheid’s pulsation. 

 

 

Problem 12. Marking scheme Apparent magnitude of the Moon 
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4
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2
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R 










 1p 

The absolute brightness is: 

,4 24

cefcef RTL  
 1.5p 

And the apparent brightness : 

,
4

4

4 2

cefP,

24

cef

2

cefP,

cef
cef

d

RT

d

L
E








  1.5 p 

 cefP,d  is the distance between the observer on Erath and the cepheide  

2

cefP,

3/4

3/2

2

4

cef

cef
4

4
4

d

P
KM

T

E



 










  1p 

Similarly for Sun  
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4

4

4 2
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2

S

4

S

2
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S

S
d

RT

d

L
E








  1p 

By using the Pogson formula: 

 ;4,0log Scef

S

cef mm
E

E
  1p 

 

 

S
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PS
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Scef log5,2log5
E
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d

d
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

12

cefP,

2

S

4

S

2
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4

k
dRT

d
KM

T

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Scef Pk
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d
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;log5,2log5,2log5 1
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S kk
d
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k constant; 

PkM log
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