
 

2016 International Astronomy Olympiad 

Practical round: solutions 

The gravitational constant is γ or G = 6.67x10-11 m3 kg-1 s-2    

Problem α-6. Comet observer.  

6.1. 2pts 

We start off by drawing the Earth’s orbit. Using 

the tabular data we find that the suitable value 

for the radius is 2 cm. Because there are 3 

observations per year, as noted in the text, 

there are just 3 positions of the Earth, where 

the observations take place: one for 30 

September, one for 29-30 January and one for 

31 May-1 June. We mark these positions on 

the graph paper. Because 30 Sep 2004 is when 

Delta takes the largest tabular value (6.485 

AU), it is convenient to place 30 Sep on the x-

axis. The other two observational points are 

separated by an angle of о120  and are easily 

marked using simple geometry. 

Next we draw all 20 points from the table on the graphing paper, where each point represents 

the comet’s position for a particular observation with given N . To this end, we use only columns 

Date(UT), Delta and S-O-T and disregard the rest. Note that Delta is the distance between the 

comet and the Earth. Therefore some care must be exercised to measure Delta from the correct 

position of the Earth defined by Date(UT). 
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Next we draw a smooth closed curve around the points, which resembles an ellipse.  

6.2. 3pts 

First by observing the curve we identify the direction of the semi-major axis. Then we draw a line 

along this direction, which approximately halves the ellipse. Next we mark the so-obtained 

perihelion and aphelion and measure the distance between them, which yields 2a . We also 

measure the perihelion distance, which yields (1 )a е . Bearing in mind that 2 cm = 1 AU, we find 

that  

3.45a  AU and 0.58e  . 

In fact, the real values are 3.44a  AU and 0.57e  . 

 

6.3. 1pt 

The first point ( 1N  )and the last point ( 20N  ) almost lie on the x-axis meaning that for the 

time interval separating these observations, the comet has done a full cycle. Therefore we obtain  

1
(20 1)

3
T   years 6.33 years, 

while the real value is 6.38T   years. 

6.4. 2pts 

From Kepler’s second law we know that a line segment joining an orbitingbody and the Sun 

sweeps out equal areas S  during equal intervals of time t . This means that / /S t S T   , 

where S  isthe area inside the ellipse, and T is the comet’s orbital period. Note that at the 

perihelion and at the aphelion the following identities hold for very small t : 
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For the derivation consider the area of an isosceles triangle of height (1 )a e  and base 
pv t . 

Thus we find 
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We can express the speeds directly by a and T  if we use the formula 2 21S ab a e     : 
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6.5. 2pts 

The solar mass M can be obtained directly from the identity (neglecting the comet’s mass): 
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6.6. 2pts 

From conservation of energy we have 
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In solution 6.4. we found 
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Thus we arrive at  
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For the observation with 7N   we measure that 3.25r  AU, so we get 7 17.2v  km/s. 

The escape velocity at this point is obtained by taking the limit as a approaches : 
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Practical round: solutions 

The gravitational constant is γ or G = 6.67x10-11 m3 kg-1 s-2    

Problem β-6. The first gravitational wave detection.  

6.1. 1 pt 

 
The initial masses of the two black holes are 36+/-4M⊙ and 28+/-4M⊙. Their 

Schwarzschild radii are calculated using Rs = 2GM/c2
 , which gives 107+/-12 km and 

83+/-12 km. The errors are calculated using (ΔRs/Rs = ΔM/M). 

 
6.2. 2.5 pts 

 

A good estimate of the precision of the measurements can be gained by comparing the 
Hanford and Livingston signals. At the time of the merger, we see two strong maxima 

and a minimum of the signal. For them, the time-axis intercepts for the Livingston signal 
are approximately at: 
 

[0.4190, 0.4215, 0.4234, 0.4259] s 
 
while for the Hanford signal, they are at: 

 
[0.4193, 0.4217, 0.4239, 0.4259] s 

 
These correspond to half-periods of: 
 

[0.0025, 0.0019, 0.0025] sec 
[0.0024, 0.0022, 0.0020] sec 

 
for the two signals, respectively. 
 

Assuming those measurements are both independent and representative for the time of 
the merger, taking the average and standard deviation of those, we get the half-period of 

the signal to be: 
 
0.0023±0.0003s 

 
An attempt at a more accurate determination can be made by building a P(t) diagram.  

 
The signal has close to symmetric minima and maxima, and the trends of both the 
maxima and the minima are consistent across both the odd and even peaks. This 

symmetry implies that the signal is emitted from a binary system with two components of 
roughly equal masses, as confirmed by the LIGO results.  

 



Therefore, from the symmetry of the configuration of the system, the signal must be 
identical irrespective of which of the initial black holes is closer to us while they orbit 
each other. Thus, the signal must have a period of exactly half of the orbital period of the 

black holes. Therefore, the orbital period at the time of the merger must be 4 times 
larger than the half-period of the signal quoted above. 

 
Thus, we can conclude that the orbital period is: 
 

T = 0.0092 ± 0.0012 s 
 
6.3. 2 pts 

 
Assuming circular orbits and Newtonian mechanics, we can apply Kepler's third law:  

 
a3/T2 = G(M1+M2)/(4π2) 

 
where the semi-major axis at the moment of the merger is simply: 
 

a = Rs1+Rs2 = 2G(M1+M2)/c2 
 

We can combine the two equations above to solve for the total mass: 
 
M1+ M2 = Tc3/(25/2πG) 

 
Using the value for the period we obtained in II.b, we find: 

 
M1+M2=105±13M⊙ 

  
6.4. 1.5 pts 

 
In Newtonian mechanics, the gravitational potential energy of the system is  
 

EP = –GM1M2/a. 
 

For a circular orbit the kinetic energy is EK = |EP|/2, and so the mechanical energy is 
given by 
 

E = –GM1M2/(2a), 
 

which at large separations tends to zero. Assuming, the orbits are close to circular, and 
using a semi-major axis of a=Rs1+Rs2 at the time of the merger, we obtain that the 
change in mechanical energy of the binary system until the moment of the merger is 

given by: 
 

ΔE = (M1M2/(M1+M2))(c
2/4) 

 
which should equal the total energy emitted in gravitational waves. Plugging in the 

numerical results obtained so far, and the assumption M1=M2, we find:  



ΔE = 6.6 ± 0.8M⊙c2. 
 

6.5. 2 pts 

 

We will find the period around t~0.32s. The two maxima are around that time are at: 
 
0.316±0.005s and 0.344±0.005s 

 
The period of the signal is then 0.028±0.005s (errors added in quadrature). This implies 

an orbital period which is twice larger (see II.b): 
 
Ti=0.056±0.010s at 0.10 s before the outburst 

 
Combining the expression for the mechanical energy: 

E = –GM1M2/(2a) 
 
with Kepler's third law: 

 
a3/T2=G(M1+M2)/(4π2), 

 
we can find the mechanical energy in the initial moment. We obtain: 
 
Ei = 2.0±0.5M⊙c2  

 
Our previous estimate of E was made in 6.4.: 
 
E = 6.6±0.8M⊙c2 at t = 0.4226±0.0002s  

 
Thus, the change of mechanical energy of the system is: 
ΔE0.1 = Ei – E = 4.6±0.9M⊙c2 

 
over a time interval of 0.1s 

 
This corresponds to average power of emission for the chosen time interval, which 

equals: 
 
P = ΔE0.1/Δt = 8 ± 2 × 1048 W  

 
6.6. 2 pts 

 
We are told that the flux (F) is proportional to h2. We also know that for any wave, F is 
inversely proportional to the square of the distance (d). Then h and d must be inversely 

related (F ~ h2, F ~ 1/d2  h ~ 1/d). Thus, we can set up the following ratio: 
 

h1/h2=d2/d1 
 
for any two points outside the black holes. 

 



Right next to the two black holes (at a distance Rs ~ Rs1+ Rs2)  from the center of 
masses), the strain is h0 = v2/c2. We can estimate the distance d via 
 

h/h0 = Rs/d  d = Rs(v/c)2/h 
 

where h is the strain measured here on Earth. From the figure, h ~ 1x10-21. 
 
If we approximate the orbital velocity at the time of merging as circular, if would be  

 
v2 ~ G(M1+M2)/(Rs1+Rs2)  (v/c)2 ~ 0.5 

 
Therefore, to an order of magnitude d ~ 1.7 Gpc. 
 
6.7. 1pt 

 
Supermassive black holes span the range from 106M⊙ to 1010M⊙. Using a 

cosmological distance of dmin ~ 1Gpc to such merging sources, combined with our result 

for how the strain scales with distance from the previous part of the problem: 
 

h ~ 0.5(Rs1+Rs2)/d 
 
we get: 

 
h ~ from 10-17 to 10-13 

 
for the signal from such merging SMBHs. To be detectable, we need a non-trivial signal-
to-noise ratio, and thus we can put the minimum sensitivity requirement at 

 
hmin ~ from 10-18 to 10-14 for the range of masses, corresponding to SMBHs.  
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The gravitational constant is γ or G = 6.67x10-11 m3 kg-1 s-2    

Problem αβ-7. The Initial Mass Function and supernovae.  

7.1. 6pts (3pts for reasonably accurate measurements + 3pts for further considerations)  

Stars with an initial mass > 8 M⊙ explode as core-collapse supernovae. Let us mark on the IMF 

figure the space where these stars reside with grey. Then we divide both the left and the right 

part of the graph with bins. We calculate the scales on both axes: 

X: Δ(lgM) = 1  ΔX=5.75 cm 

Y: Δ(lg(Δn/ΔlogM)) = 1  ΔY=3.95 cm    (defining lgX = log10X) 

The base of the Y-axis logarithm is irrelevant – if it is changed, the function is multiplied by a 

constant and the final results should be the same. 

For each bin we calculate the width Δ(lgM) and the height lg(Δn/ΔlogM). We make the rough 

approximation that Δ(lgM) << 1 so the process is analogous to numerical integration and can be 

expressed with integrals as well. For further accuracy the function can be extrapolated linearly 

until it crosses the X-axis at ~ 160 M⊙. 



For each bin we then calculate the X-axis center M and the value of Δn that corresponds to the 

bin width. If the values to the left of the 8 M⊙ vertical line are ML, ΔnL and to the right are MH, 

ΔnH, we can obtain 

𝑀𝑆𝑁 = ∑(𝑀𝐻𝛥𝑛𝐻)/∑(𝛥𝑛𝐻) 

𝑞 = ∑(𝑀𝐻𝛥𝑛𝐻)/∑(𝑀𝐻𝛥𝑛𝐻+ 𝑀𝐿𝛥𝑛𝐿) 

A reasonable result would be MSN ~ 20 M⊙ , q ~ 30%.  

Other mathematical methods and bin distributions may be used so these values are correct 

within an order of magnitude. Participants from group α can avoid the usage of logarithms by 

considering the Y-axis in the form M(Δn/ΔM) and by doing linear approximations between the X-

axis ticks (or by choosing bins using the ticks). 

As the galactic star formation rate is said to be ΔM/Δt = 8 M⊙/yr, and the timescale of the 

evolution of massive stars is much lower than the change of this rate, the mass rate of 

supernova explosions is  

qΔM/Δt ~ 2.4 M⊙/yr 

This mass is distributed among objects with an average mass MSN therefore the expected 

frequency is 

f = q(ΔM/Δt) / MSN ~ 0.12 yr-1 

or the derived expectations are that there should be a supernova each 8 years on average. 

Please note that the mass loss of massive stars is not taken into account which leads to 

significant systematic errors. The mass of supernova progenitors right before the explosion is 

significantly lower than their initial mass. The actual values are MSN ~ 12 M⊙ , q ~ 8%, and  

f = 1/20 yr-1. 

7.2. 2pts 

The last directly observed galactic supernovae exploded in 1006, 1054, 1572 and 1604 and 

some of them were type Ia, which are less massive systems with a different mechanism of 

explosion. So the approximate value of the observed frequency is  

f ~ 1/400 yr-1 

This value is significantly lower than the one derived in 7.1. A possible explanation is that many 

explosions are obscured by dust as massive stars are situated in the galactic disk. As we lie 

inside it, the galactic disk covers a large angular area on the sky which is not easy to monitor. 

Furthermore, most of the observations historically were conducted from the Northern 

Hemisphere. 


