EURO-ASIAN ASTRONOMICAL SOCIETY Theo Round Group язык Русский language язык English language #### XVIII Международная астрономическая олимпиада XVIII International Astronomy Olympiad Литва, Вильнюс 6 – 14. IX. 2013 Vilnius, Lithuania ## Теоретический тур. Рисунок к задаче 6 ### Theoretical round. Picture for problem 6 SNR ## EURO-ASIAN ASTRONOMICAL SOCIETY Round Theo Group α #### XVIII Международная астрономическая олимпиада #### XVIII International Astronomy Olympiad Литва, Вильнюс 6 - 14. IX. 2013 Vilnius, Lithuania | язык | Fuglish | |----------|---------| | language | English | #### Theoretical round. Problems to solve General note. Maybe not all problems have correct questions. Some questions (maybe the main question of the problem, maybe one of the subquestions) may make no real sense. In this case you have to write in your answer (in English or Russian): «impossible situation – ситуация невозможна». Of course, this answer has to be explained numerically or logically. Data from the tables (Planetary data, stars, constants, etc.) may be used for solving every problem. The answers «**Да-Yes**» or «**Het-No**» have to be written in English or Russian. - 1. Star rise in Moletai. An observer in Moletai recorded that a star culminated at 02:54 and set at 05:45 on September 8, 2013. Effects of irregularities of the horizon should not be taken into account. - **1.1.** At what time will the star rise on September 9, 2013? - **1.2.** In approximately which direction do you need to wait for the rising of the star? Choose one of the alternatives: N, NE, E, SE, S, SW, W, NW. Draw a picture with an explanation. - 2. Gliese 581 g. This celestial body in the system of the star Gliese 581 is the most Earth-like planet found outside the Solar System, and the exoplanet with the greatest recognized potential for harboring albuminous based life. Estimate orbital period τ of Gliese 581 g. Consider the orbit to be circular. - 3. Observations from Gliese 581 g. - **3.1.** What is the apparent magnitude of our Sun and **3.2.** what is the approximate constellation in which our Sun will be seen when observed from the planet Gliese 581 g? - **4. XVIII century. Midday.** (Dubingiai is the nearest town to the accommodation place of XVIII IAO.). There were different systems of units of measurement in the history of science. This problem is to use historical (at present obsolete) units of measurement. - **4.1.** Calculate the capacity of the solar energy that in the end of the XVIII century fell on the unit of area of the territory in the outskirts of Dubingiai at midday time: in winter, in spring, in autumn, and in summer. The answer must be given using only the «new» physical units, which were coming into operation in those days in this area: horse-powers per square verst. **4.2.** Estimate also the capacity of the solar energy incident on a local horse those times. The answer must also be expressed in physical units, which were coming into operation in those days. What can be surprising about the right answer? - **5. XXI century. Midday.** As is known, the Republic of Lithuania (see map) uses zone with winter time UT+02 and summer time UT+03. Calculate and draw a conclusion about the following: - **5.1.** Are there any places in Lithuania, where today (September 8, 2013) the Sun will be exactly in the south at a time when the watches of residents will show just 12:00? («да-yes» or «нет-no»). - **5.2.** And in general, on the other days of the year, are there such places? («да-yes» or «нет-no»). If "yes", then calculate in what dates, if "no", then justify it by calculations. - 6. Supernova remnant. An X-ray image of supernova remnant (SNR) Cas A located at a distance of d = 3400 pc was obtained using Chandra Space Observatory. The negative of this image is shown in Fig. SNR. The boundaries of the SNR region are marked by a circle. The scale of the image is shown in the upper left corner of the figure. A dot located close to the center of the circle is the neutron star the remaining core of the collapsed star. The rectangular marks outside the circle are given for the reference when determining the center of the circle. Assume that the amount of energy released in the supernova explosion was about $E_{SN} \approx 10^{46}$ J, 1% of which drives the expansion of the remnant. The average density of the matter in the SNR is $\rho \approx 10^{-21}$ kg/m³. - **6.1.** Estimate the age of the SNR Cas A. - **6.2.** Calculate the average velocity of the motion of the neutron star from the center of the SNR. ## EURO-ASIAN ASTRONOMICAL SOCIETY | Round | Theo | |-------|------| | Group | β | XVIII Международная астрономическая олимпиада #### XVIII International Astronomy Olympiad Литва, Вильнюс 6 - 14. IX. 2013 Vilnius, Lithuania | язык | English | |----------|---------| | language | English | #### Theoretical round. Problems to solve General note. Maybe not all problems have correct questions. Some questions (maybe the main question of the problem, maybe one of the subquestions) may make no real sense. In this case you have to write in your answer (in English or Russian): «impossible situation – ситуация невозможна». Of course, this answer has to be explained numerically or logically. Data from the tables (Planetary data, stars, constants, etc.) may be used for solving every problem. The answers «**Да-Yes**» or «**Het-No**» have to be written in English or Russian. - 1. RadioAstron. The RadioAstron project is an international collaborative mission lead by Astro-Space Center of Russian Academy of Sciences. On July 18, 2011 a satellite, «Spektr-R», carrying a 10-m (in diameter) space radio-telescope was launched into an elliptical orbit around the Earth. Together with Earth-based radio-telescopes, «Spektr-R» works as interferometer. RadioAstron operates at the standard radio astronomical wavelengths of 1.19–1.63 cm (K-band), 6.2 cm (C-band), 18 cm (L-band), and 92 cm (P-band). Now «Spektr-R» is rotating in a very elongated orbit with a period τ = 8.3 days and a height of perigee h = 600 km from the Earth surface. - **1.1.** Estimate the maximum resolving power (angular resolution in arcsec) of RadioAstron. Draw a schematic picture, explaining your choice of the situation when it may occur. - **1.2.** Estimate the resolving power of RadioAstron if the target is observed in the direction of the major axis of «Spektr-R» orbit, and also draw a schematic picture. - 2. Gliese 581 g. This celestial body in the system of the star Gliese 581 is the most Earth-like planet found outside the Solar System, and the exoplanet with the greatest recognized potential for harboring albuminous based life. - **2.1.** Estimate orbital period τ of Gliese 581 g. Consider the orbit to be circular. - **2.2.** Assume intelligent life resides on Gliese 581 g. The civilization uses radio-waves. Is it possible to determine the size (diameter) of the planet by observations on RadioAstron («да-yes» or «нет-по»)? Justify the answer by calculations. #### 3. Observations from Gliese 581 g. - **3.1.** What is the apparent magnitude of our Sun and **3.2.** what is the approximate constellation in which our Sun will be seen when observed from the planet Gliese 581 g? - **3.3.** Estimate the angular diameter of the star Gliese 581 when observed from the planet Gliese 581 g. 4. XVIII century. Midday. (Dubingiai is the nearest town to the accommodation place of XVIII IAO.). There were different systems of units of measurement in the history of science. This problem is to use historical (at present obsolete) units of measurement. **4.1.** Calculate the capacity of the solar energy that in the end of the XVIII century fell on the unit of area of the territory in the outskirts of Dubingiai at midday time: in winter, in spring, in autumn, and in summer. The answer must be given using only the «new» physical units, which were coming into operation in those days in this area: horse-powers per square verst. **4.2.** Estimate also the capacity of the solar energy incident on a local horse those times. The answer must also be expressed in physical units, which were coming into operation in those days. What can be surprising about the right answer? - **5. XXI century. Midday.** As is known, the Republic of Lithuania (see map) uses zone with winter time UT+02 and summer time UT+03. Calculate and draw a conclusion about the following: - **5.1.** Are there any places in Lithuania, where today (September 8, 2013) the Sun will be exactly in the south at a time when the watches of residents will show just 12:00? («да-yes» or «нет-no»). - **5.2.** And in general, on the other days of the year, are there such places? («да-yes» or «нет-no»). If "yes", then calculate in what dates, if "no", then justify it by calculations. - **6. Supernova remnant.** An X-ray image of supernova remnant (SNR) Cas A located at a distance of d = 3400 pc was obtained using Chandra Space Observatory. The negative of this image is shown in Fig. SNR. The boundaries of the SNR region are marked by a circle. The scale of the image is shown in the upper left corner of the figure. A dot located close to the center of the circle is the neutron star the remaining core of the collapsed star. The rectangular marks outside the circle are given for the reference when determining the center of the circle. Assume that the amount of energy released in the supernova explosion was about $E_{SN} \approx 10^{46} \, \mathrm{J}$, 1% of which drives the expansion of the remnant. The average density of the matter in the SNR is $\rho \approx 10^{-21} \, \mathrm{kg/m^3}$. - **6.1.** Estimate the age of the SNR Cas A. - **6.2.** Calculate the average velocity of the motion of the neutron star from the center of the SNR. #### EURO-ASIAN ASTRONOMICAL SOCIETY Round Theo α ## Group | язык
language | Русский | |------------------|---------| | язык
Ізпанаде | English | ## XVIII Международная астрономическая олимпиада XVIII International Astronomy Olympiad Литва, Вильнюс 6 – 14. IX. 2013 Vilnius, Lithuania ## Элементы орбит. Физические характеристики некоторых планет, Луны и Солнца #### Parameters of orbits. Physical characteristics of some planets, Moon and Sun | Небесное тело, | Сред
расстоя
централь | яние от | (или ана | ический
логичный)
обращения | На-
клон
орби- | Экс-
цен-
триси- | Эквато-
риальн.
диаметр | Macca | Сред-
няя
плот- | Ускор.
своб.
пад. | На-
клон | Макс.
блеск,
вид. с | Аль- | |---------------------|-----------------------------|-------------------------------|-------------------------|-----------------------------------|----------------------|------------------------|-------------------------------|---------------------|----------------------------|----------------------------|---------------|---------------------------|-------------| | планета | в
астр.
ед. | В
<i>млн.</i>
<i>км</i> | в
тропич.
годах | в
средних
сутках | ты,
і | тет,
<i>е</i> | км | 10 ²⁴ кг | ность
г/см ³ | у пов.
м/c ² | оси | Земли
**) | бедо | | Body, planet | Average d
centra
in | | Sidere
(or and
in | al period
alogous) | Orbital inclination, | Ec-
centri-
city | Equat.
diameter | Mass | Av.
den-
sity | Grav. accelr. at surf. | Axial
tilt | Max.
magn.
From | Al-
bedo | | pranet | astr.
units | in
10 ⁶ km | tropical
years | in
days | i i | e | km | $10^{24} kg$ | g/cm^3 | m/s^2 | | Earth
**) | | | Солнце
Sun | 1,6·10 ⁹ | 2,5·10 ¹¹ | 2,2·10 ⁸ | 8·10 ¹⁰ | | | 1392000 | 1989000 | 1,409 | | 2 | -26,74 ^m | | | Меркурий
Mercury | 0,387 | 57,9 | 0,241 | 87,969 | 7,00° | 0,206 | 4 879 | 0,3302 | 5,43 | 3,70 | 0,01° | | 0,06 | | Венера
Venus | 0,723 | 108,2 | 0,615 | 224,7007 | 3,40 | 0,007 | 12 104 | 4,8690 | 5,24 | 8,87 | 177,36 | | 0,78 | | Земля
Earth | 1,000 | 149,6 | 1,000 | 365,2564 | 0,00 | 0,017 | 12 756 | 5,9742 | 5,515 | 9,81 | 23,44 | .1 | 0,36 | | Луна
Moon | 0,00257 | 0,38440 | 0,0748 | 27,3217 | 5,15 | 0,055 | 3 475 | 0,0735 | 3,34 | 1,62 | 6,7 | -12,7 ^m | 0,07 | | Mapc
Mars | 1,524 | 227,9 | 1,880 | 686,98 | 1,85 | 0,093 | 6 794 | 0,6419 | 3,94 | 3,71 | 25,19 | -2,0 ^m | 0,15 | | Юпитер
Jupiter | 5,204 | 778,6 | 11,862 | 4 332,59 | 1,30 | 0,048 | 142 984 | 1899,8 | 1,33 | 24,86 | 3,13 | -2,7 ^m | 0,66 | | Сатурн
Saturn | 9,584 | 1433,7 | 29,458 | 10 759,20 | 2,48 | 0,054 | 120 536 | 568,50 | 0,70 | 10,41 | 26,73 | 0,7 ^m | 0,68 | **) Для внешних планет и Луны – в среднем противостоянии. **) For outer planets and Moon – in mean opposition. Lithuania * Литва Lietuva #### EURO-ASIAN ASTRONOMICAL SOCIETY Round Theo Group α | язык
language | Русский | |------------------|----------| | язык | Enalial. | | language | English | ## XVIII Международная астрономическая олимпиада XVIII International Astronomy Olympiad Литва, Вильнюс 6 – 14. IX. 2013 Vilnius, Lithuania ## Некоторые константы и формулы Some constants and formulae | Скорость света в вакууме, с (м/с) | 299 792 458 | Speed of light in vacuum, c (m/s) | | | | |---|------------------------|---|--|--|--| | Гравитационная постоянная, $G(H \cdot m^2/\kappa r^2)$ | $6.674 \cdot 10^{-11}$ | Constant of gravitation, G (N·m²/kg²) | | | | | Солнечная постоянная, А (Вт/м²) | 1367 | Solar constant, A (W/m²) | | | | | Параметр Хаббла, среднее значение H_0 (км/с/МПк) диапазон значений | 71
50-100 | $\begin{array}{ll} \text{mean value} & \text{Hubble parameter,} \\ \text{diapason of values} & \text{H}_0 \text{ (km/s/Mpc)} \end{array}$ | | | | | Постоянная Планка, h (Дж·с) | $6.626 \cdot 10^{-34}$ | Plank constant, h (J·s) | | | | | Заряд электрона, е (Кл) | $1.602 \cdot 10^{-19}$ | Charge of electron, e (C) | | | | | Масса электрона, m_e (кг) | $9.109 \cdot 10^{-31}$ | Mass of electron, me (kg) | | | | | Соотношение масс протона и электрона | 1836.15 | Proton-to-electron ratio | | | | | Постоянная Фарадея, F (Кл/моль) | 96 485 | Faraday constant, F (C/mol) | | | | | Магнитная постоянная, μ_{θ} (Гн/м) | 1.257·10 ⁻⁶ | Magnetic constant, μ_0 (H/m) | | | | | Универсальная газовая постоянная, R (Дж/моль/К) | 8.314 | Universal gas constant, R (J/mol/K) | | | | | Постоянная Больцмана, к (Дж/К) | $1.381 \cdot 10^{-23}$ | Boltzmann constant, k (J/K) | | | | | Постоянная Стефана-Больцмана, $\sigma\left(B \tau / \text{M}^2 / \text{K}^4\right)$ | 5.670·10 ⁻⁸ | Stefan-Boltzmann constant, $\sigma (W/m^2/K^4)$ | | | | | Константа смещения Вина, $b \ (M \cdot K)$ | 0.002897 | Wien's displacement constant, b (m·K) | | | | | Лабораторная длина волны Н $lpha$ (Å) | 6562.81 | Laboratory wavelength of H α (Å) | | | | | Длина тропического года, Т (сут) | 365.242199 | Tropical year length, T (days) | | | | | Стандартная атмосфера (Па) | 101 325 | Standard atmosphere (Pa) | | | | | Ослабление видимого света земной атмосферой в зените (минимально) | 19%, 0.23 ^m | Visible light extinction by the terrestrial atmosphere in zenith (minimum) | | | | | Показатель преломления воды при 20°C, n | 1.334 | Refractive index of water for 20°C, n | | | | | Момент инерции шара | $I = ^2/_5 MR^2$ | Moment of inertia of a solid ball | | | | | Объём шара | $V={}^4/_3\;\pi R^3$ | Volume of a ball | | | | | Площадь сферы | $S=4\pi R^2$ | Area of sphere | | | | | π | 3.14159265 | π | | | | | e | 2.71828183 | e | | | | | Золотое сечение, ф | 1.61803399 | Golden ratio, ϕ | | | | | | | | | | | ## EURO-ASIAN ASTRONOMICAL SOCIETY Round Theo Group αβ # язык Pyccкий язык language English ## XVIII Международная астрономическая олимпиада ## XVIII International Astronomy Olympiad Литва, Вильнюс 6 – 14. IX. 2013 Vilnius, Lithuania ## Данные о некоторых звёздах Data of some stars | | | | RA | DEC | p | m | SC | масса
mass | |----------------------|---------------------|----------------------------|--|------------------------------|--------|--|----------|--------------------------------| | Солнце | Sun | 0 | 0 ^h - 24 ^h | -23°26' +23°26' | 8".794 | vis -26 ^m .74
bol -26 ^m .82 | G2 | $1M_{f O}$ | | Проксима
Центавра | Proxima
Centauri | V645 Cen,
α Cen C | 14 ^h 29 ^m 43 ^s | -62° 40' 46" | 0".769 | 11 ^{m} .05 | M5.5 | 0.123 M ₀ | | Альфа
Центавра | Alpha
Centauri | α Cen $\frac{A}{B}$ | 14 ^h 39 ^m 37 ^s
14 ^h 39 ^m 35 ^s | -60° 50' 02"
-60° 50' 14" | 0".747 | -0 ^m .01
1 ^m .34 | G2
K1 | 1.1 Mo
0.9 Mo | | Бета
Центавра | Beta
Centauri | β Cen | 14 ^h 03 ^m 49 ^s | -60° 22' 23" | 0".009 | 0 ^m .61 | В1 | 21 M ₀ | | Эпсилон
Эридана | Epsilon
Eridani | ε Eri | 03 ^h 32 ^m 56 ^s | -09° 27' 30" | 0".311 | 3 ^m .74 | K2 | 0.82 M ₀ | | Глизе 581 | Gliese 581 | но Lib | 15 ^h 19 ^m 27 ^s | -07° 43' 20" | 0".16 | vis 10 ^m .57
bol 8 ^m .0 | M3V | 0.31 M ₀ | #### Меры мощности 1 лошадиная сила (л.с.) = 735,49875 Вт #### Units of power 1 horse-power (hp) = 735,49875 W ## Местные меры длины конца XVIII века 1 аршин (арш) = 0,711187 м 1 пядь (пд) = 1/4 аршина 1 вершок (врш) = 1/4 пяди 1 сажень (сж) = 3 аршина 1 верста (врст) = 500 саженей # Local units of length in the end of XVIII century 1 arshin (arsh) = 0.711187 m 1 span (sp) = 1/4 arshin 1 vershok (vrsh) = 1/4 span 1 sajene (sj) = 3 arshin 1 verst (vrst) = 500 sajene ## EURO-ASIAN ASTRONOMICAL SOCIETY Round Theo Group β ## XVIII Международная астрономическая олимпиада XVIII International Astronomy Olympiad Литва, Вильнюс 6 – 14. IX. 2013 Vilnius, Lithuania | язык
language | <u>Русский</u> | |------------------|----------------| | язык | English | | language | Digitali | #### Диаграмма Герцшпрунга-Рассела #### Hertzsprung-Russell diagram