
GeCAA - Theory Solutions

October 3, 2020

1 Astrophotography
An astrophotographer, based on the Equator, uses a good digital camera on a tripod,
but with no tracking. The camera has a telescopic lens with focal length of 150mm and
aperture (objective diameter) of 84mm. The sensor has effective light collecting diameter
of 22.5mm. The photographic target is a star field at the observer’s Zenith.

(a) (2 points) Calculate the field of view (the angular width of the image) which can
be captured on the sensor using this equipment.

(b) (5 points) The pixels in the camera’s sensor are separated by a distance of 3.23 µm.
What is the maximum possible exposure time for a single frame, so that no star trails
appear on the exposed image?

(c) (3 points) For a better-quality image of the star field, the photographer decides to
take multiple shots at the exposure time calculated in b) and then to stack them
together. The total time for all these shots is 30 s (ignore any time taken to write
data to the memory card) What proportion of the total field of view is possible at
the higher signal to noise ratio?

Solution
(a) By simple right angle triangle,

FOV = 2× tan−1

(
sensor width

2× Focal Length

)
= 2× tan−1

(
22.5

2× 150

)
α ≈ 8.58° 2.0

(b) Number of pixels on the sensor will be given by,

N =
Sensor width
pixel width =

22.5

3.23× 10−3

= 6965.94 1.0

As the number of pixels have to be integer, we take N = 6966 1.0
Angular coverage of each pixel will be,

Pixel view =
8.578°
6966

= 0.001 23°/pixel

≈ 4.43′′/pixel 1.0

1



As the stars complete one full circle in 23.9344 hours, 1.0
student loses this one mark if 15° per hour is used

t1 = 1.23× 10−323.9344
h

360
= 0.294 s

≈ 0.3 s 1.0

(in reality this is probably a factor of 10 smaller than the eye would detect)

(c) In 30 seconds, the sky will move by,

∆α =
360°

23.9344× 120
= 0.125 342° 1.0

∴ α−∆α

α
=

8.578− 0.125342

8.578
= 98.5% 2.0

(or 8.453° is total field of view in high resolution images from the stack) Only
penalise 15°/hr once in the whole solution.
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2 Flat Earth
(10 points) A new model of the world is gaining in popularity among some people.
These people believe in the “Flat Earth” view of the world, where the Earth is not a
spheroid, but rather a circle with radius R⊕. The central axis of the Earth (normal to
the circle passing through its centre C) is passes through the observer’s zenith.
This model must at least remain consistent with the observed phenomena, as listed below:

• The value of the solar constant is S⊙ = 1366W/m2.

• The Earth’s central axis precesses in a circle with a period 25800 years.

• The radius of the precession circle is 23.5°.

We assume that the Earth is a perfect blackbody radiator and the Sun is sufficiently far
away that all sun rays are parallel. Let us also assume that the Sun’s current (initial)
location is at the zenith.
Determine how many years it will take for the Earth’s equilibrium temperature to decrease
by 1 °C.

Solution Assume the surface area of one side of the flat Earth is A. Let the angle
between the Sun and the flat Earth’s center axis be θ, where θ is initially 0°. As
the Sun’s rays are parallel, the power delivered to the Earth by the Sun will be
S⊙A cos θ at any given point in time.
At equilibrium, this is the energy radiated away via blackbody radiation, so the
equilibrium temperature T satisfies

S⊙A cos θ = σ(2A)T 4 2.0

, where the factor of 2 comes from the fact that the flat Earth would radiate energy
from both sides.
This yields

T (θ) =
4

√
S⊙ cos θ

2σ

and we wish to find the value of θ1 such that T (θ1) = T (0)−∆T .
Thus,

4

√
S⊙ cos θ1

2σ
=

4

√
S⊙

2σ
−∆T 2.0

cos θ1 =

(
1−∆T 4

√
2σ

S⊙

)4

1.0

=

(
1− 4

√
2× 5.67× 10−8

1366

)4

cos θ1 = 0.9880 1.0

Now, we find the time it takes for the axis to make such an angle with the Sun. On
the celestial sphere, let O be the center of precession, Z be the current direction of
the axis, and X be direction of the axis when it makes an angle of θ1 with the sun,
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so ]ZCX = θ1. If ϵ is the radius of precession, then ]OCZ = ]OCX = ϵ. 1.0
By the spherical Law of Cosines on angle O of spherical triangle OXZ, we have

cos θ1 = cos ϵ cos ϵ+ sin ϵ sin ϵ cos(^O)

= cos2 ϵ+ sin2 ϵ cos(^O)

^O = cos−1

(
cos θ1 − cos2 ϵ

sin2 ϵ

)
1.0

∴ ∆t =
^O
2π

× P =
P

2π
× cos−1

(
cos θ1 − cos2 ϵ

sin2 ϵ

)
1.0

=
25800

2π
× cos−1

(
0.9880− cos2 23.5°

sin2 23.5°

)
≈ 1606 yr

Thus, the average temperature of the earth will go down by 1 °C in just over 1600
years. 1.0
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3 Mirror
A bored cosmologist comes up with a thought experiment to determine the Hubble con-
stant (H0) for his model of a Steady-State-Universe. In this experiment, a large, fully
reflecting flat mirror – carrying several gyroscopes that would maintain its spatial orien-
tation in the same plane – would be placed at a distance D from the Solar System in a
region without gravitational influences. From the Earth, a laser beam would be directed
towards that region for a long period of time. After a time T , the radiation would return
and be detected, allowing the determination of the fixed constant H0.

(a) (7 points) Find an expression for H0 as a function of D, c (speed of light) and T .
Consider that the separation S between the Solar System and the mirror increases
only due to the expansion of the universe according to the law S = seH0t, where s is
the initial separation. You may use ex ≈ 1 + x for x ≪ 1, if necessary.

(b) (3 points) Imagine that such a mirror is located in the vicinity of the star Vega
(which also features on the logo of the 1st GeCAA). Vega was the first star outside the
Solar System to be photographed and one of the first stars whose parallax (p = 0.125′′)
was accurately measured in 1840 by G. W. von Struve.
Estimate the total duration of this H0 measurement experiment.

Solution

(a) Let t1 be the time taken by the light beam from the Solar System to the mirror,
let t2 be the time taken by the beam from the mirror to the Solar System and
T the total time to go back and forth. As a first order approximation, we
will take distance travelled by the photon in each part as an average of the
initial and final distance. Therefore, equating the kinematics of the situation,
we have:

S1 =
D +DeH0t1

2
=

D
(
1 + eH0t1)

2
= ct1

S2 =
S1 + S1e

H0t2

2
=

S1

(
1 + eH0t2

)
2

= ct2 1.0

=
D

4

(
1 + eH0t1

) (
1 + eH0t2

)
≈ D

4
(2 +H0t1) (2 +H0t2)

≈ D

4
[4 + 2H0 (t1 + t2)]

S2 = D

(
1 +

1

2
H0T

)
1.5
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From the first equation, we also find:

S1 = ct1 =
D
(
1 + eH0t1

)
2

ct1 = D

(
1 +

1

2
H0t1

)
∴ t1 =

D

c− 1
2
DH0

S1 = ct1 =
2Dc

2c−DH0

1.5

similarly, S2 =
2S1c

2c− S1H0

. 0.5

Joining the expressions found, we obtain:

S2 = D

(
1 +

1

2
H0T

)
=

2S1c

2c− S1H0

D

(
1 +

1

2
H0T

)
=

4Dc2

2c−DH0

2c− 2Dc
2c−DH0

·H0(
1 +

1

2
H0T

)
=

2c

2c−DH0 −DH0

=
c

c−DH0

c =

(
1 +

1

2
H0T

)
(c−DH0)

= c−DH0 +
1

2
cH0T − 1

2
DH2

0T

0 =
H0

2
(cT − 2D −DH0T )

H0 =
cT − 2D

DT
. 2.5

Alternative solution
First note that the time taken for the laser beam to travel to the mirror and
back again is equal to the time taken for the laser beam to travel a distance of
2D (measured at t = 0) in a straight line. 2.0
The co-moving distance the beam has to cover is the same in both scenarios.
We then equate the distance travelled by the light with the amount by which
the space has expanded in that time.
In time t, the space has expanded by a factor of exp(H0t), to first order we
can linearise this to 1 + H0t. This means that the beam, on average, travels
through space that’s stretched out by a factor of 1 +H0T/2. 2.5Thus,

cT = 2D

(
1 +

H0T

2

)
and so

H0 =
cT − 2D

DT
. 2.5
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Better approximation (not required in the exam)
In reality, the light does not travel a distance of ct in this expanding universe.
To find the exact expression, consider a time differential dt time t after the
beam was emitted. In this small time interval, the beam travels a distance
of cdt. Because the space is stretched out, the travelled distance corresponds
to a smaller segment of space at t = 0, smaller by a factor of exp(H0t). The
distance spanned at t = 0 is then

dr = exp(−H0t)cdt.

We integrate this from t = 0 to t = T :∫ 2D

0

dr = c

∫ T

0

exp(−H0t)dt,

2D =
c

H0

(1− exp(−H0T )) .

The result so far is accurate within the constraints of the model, but it’s not
analytically solvable for H0. To get an estimate, we can approximate the right
hand side to

2D =
c

H0

(
1− 1 +H0T − (H0T )

2

2

)
= cT − cH0T

2

2
.

Expressing H0, we get
H0 =

2

cT 2
(cT − 2D) .

The difference between this answer and the initial estimate is 2D/cT which is
almost unitary.

(b) From the H0 expression found in the previous item, we find the travel time

T =
2D

c−DH0

1.0

=

(
c

2D
− H0

2

)−1

≈
( c

2D

)−1

=
2D

c
1.0

T =
2× 8× 3.086× 1016

3× 108

= 1.65× 109 s

T ≈ 52.2 yr. 1.0
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4 Light Curves
The light curve A shown below, shows a fictional edge-on eclipsing binary system con-
taining stars X (radius rX , luminosity LX) and Y (radius rY , Luminosity LY ) . Assume
that star X is brighter, but star Y is hotter.
(a) (1 point) Which of the two stars is likely to be on the main sequence? (Write “X”

or “Y”)

(b) Based on light curve A, estimate:

(I) (2 points) rX
rY

, the ratio of the radii of the two stars.
(II) (2 points) LX

LY
, the ratio of the Luminosity of the two stars.

(c) (15 points) For light curves B to F, in each case only one parameter of the binary
system has been changed from the case in light curve A. For each case, choose the
description from the following list that best corresponds to the change (Write the
appropriate roman numeral in the answer sheet).

(i) Star X increased in size.
(ii) Star X increased in luminosity.
(iii) Star X decreased in size.
(iv) Star X decreased in luminosity.
(v) Star Y increased in size.
(vi) Star Y increased in luminosity.
(vii) Star Y decreased in size.
(viii) Star Y decreased in luminosity.
(ix) Star X is a variable star.
(x) Star Y is a variable star.
(xi) The inclination of the system relative to the Earth has changed.
(xii) The distance of the system from the Earth has decreased.
(xiii) The distance of the system from the Earth has increased.
(xiv) The orbital period of the system increased.
(xv) The orbital period of the system decreased.
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Solution

(a) As “Y” is smaller, yet hotter, it must be on the main sequence. 1.0

(b) (I) For this we have to measure the total duration of eclipse and compare it
with bottom flat part (total eclipse phase) in the lightcurve.
Total eclipse time should be (1.25± 0.10) days, flat period of eclipse
(0.25± 0.05) days. 1.0

rX + rY
rX − rY

=
1.25± 0.10

0.25± 0.05
= 5.0± 1.5

∴ rX
rY

=
5 + 1

5− 1
= 1.5± 0.2 1.0

(II) Because star Y is hotter, star Y will be brighter than a part of star
X with the same area. Thus, the deeper dip in the light curve is due
to star Y passing behind star X. Thus, the flux from star X must be
10× 10−12 W/m2. As the combined flux is 16× 10−12W/m2, the flux of
star Y is 6× 10−12W/m2. Thus

LX

LY

=
10× 10−12

6× 10−12 = 1.67

2.0
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(c) • Light Curve B: We see that the dips in brightness both become shallower
and have become rounded at the bottom, while the maximum brightness is
still 16× 10−12 W/m2. If radius of one of the stars had changed (rounded
bottom), then we would expect that total eclipse period to also change.
But that has not happened. Brightening of star X can explain shallower
dip but not rounded trough. This means that the stars no longer fully
eclipse each other. Hence,
(cxi): The inclination of the system relative to the Earth has
changed. 4.0

• Light Curve C: The y-axis shows that the overall flux has increased.
Since flux of both the stars has gone up by the same factor and there is
no substantial change in the profile of eclipse,
(cxii): The distance of the system from the Earth has decreased.

4.0
• Light Curve D: The regular fluctuations in brightness indicate the one

components of the system is a variable star. Since the fluctuations persist
through all the dips in flux, this indicates that the variable star is never
completely eclipsed. Therefore,
(cix): Star X is a variable star. 3.0

• Light Curve E: The overall flux and dips in the flux are the same size,
but occur much more frequently. This means that
(cxv): The orbital period of the system decreased. 2.0

• Light Curve F: The regular fluctuations again indicate that one of the
components of the system is a variable star. During the primary eclipse,
light curve is perfectly flat. This can only occur if,
(cx): star Y is a variable star. 2.0
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5 HII region
Luminous Blue Variable (LBV) are massive, unstable, supergiant stars that can undergo
episodes of very strong mass loss, due to an instability in their atmospheres. After such
an event, a dense nebula is formed around the star. LBV are also very hot stars and
produce a large amount of high-energy photons that are able to ionise hydrogen atoms
(Eph > hν0 = 13.6 eV) creating a roughly spherical region of ionized hydrogen (HII re-
gion).
In this problem, we consider a static, homogeneous, pure hydrogen nebula with a concen-
tration of nH = 108m−3 and temperature THII = 104K, ionized by photons from a single
LBV star with a stable rate of ionizing photons Q = 1049 ph/s. Assume that each photon
can ionise only one hydrogen atom. At a particular location within an HII region, the
rate of photoionization is balanced by the rate of recombination per unit volume. This
sets the radius of the fully ionized region and this region is called the Stromgren sphere
with the radius RS.
The total number of recombinations per volume is proportional to the concentration of
protons np, the concentration of electrons ne and the recombination coefficient for hy-
drogen α(THII) = 10−19m3 s−1. For simplification, ignore the fact that the process of
recombination can also release ionising photons.

(a) (5 points) Derive an algebraic expression for the radius of the Stromgren sphere and
calculate its value for the given parameters. Express your answer in units of parsecs
(pc).

(b) (3 points) The photoionization cross-section of H-atoms in the ground state encoun-
tering photons with frequency ν0 is equal to

σ ≈ 10−21m2

Calculate the mean-free path lν0 of an ionising photon. Compare lν0 to RS to deter-
mine if this ionized nebulae is sharp-edged or not? (answer “YES” or “NO”)

(c) (4 points) On what timescale (in years) do you expect the Stromgren sphere to
form?

(d) (4 points) Radiation from an ionized hydrogen cloud (HII region) is often called
free-free emission because it is produced by free electrons scattering off the ions
without being captured: the electrons are free before the interaction and remain free
afterwards. In this process, the electron retains most of its pre-scattering energy.
An electron, while passing by a much more massive singly ionized hydrogen atom,
produces a radio photon of ν = 10GHz. Calculate the mean electron thermal energy
in the HII region, for the given temperature of the Stromgren sphere. Is this an
example of free-free emission? (answer “YES” or “NO”)

(e) (4 points) Since the HII region is in local thermodynamic equilibrium, one can
calculate the absorption coefficient that is proportional to the optical depth τν ∝ ν−2.1

and it turns out that at the sufficiently high radio frequencies, the hot plasma is nearly
transparent and hence, τν ≪ 1.
The flux density of photons has power-law spectra of the form Sν ∝ νβ.
Find β for the radio frequencies.
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Solution

(a) As the number of H-atoms undergoing ionization and recomination are bal-
anced at RS, each photon can ionize exactly one hydrogen atom and each
neutral hydrogen has exactly one proton and one electron,

nrecomb = nHII = Q

and ne = np = nH 2.0
nrecomb = αnpneVS

Q = αn2
H

4π

3
R3

S 1.0

∴ RS = 3

√
3Q

4παn2
H

1.0

= 3

√
3× 1049

4π × 10−19 × (108)2

= 1.3× 1017m

∴ RS ≈ 4 pc 1.0

(b) Per one unit length distance, a typical photon will encounter σnH H-atoms.
Thus, the mean free path will be,

lν0 =
1

σnH

=
1

σ10−21 × 108

lν0 = 1013m 2.0
∴ lν0 ≈ 10−4RS ≪ RS

Thus, the boundary layer of the sphere is very thin as compared to its total
size. Hence,
“YES” this ionized nebula is very sharp-edged. 1.0

(c) For Stromgren sphere to form, all H-atoms (N) inside RS need to be ionized.
Thus, time tS required will be

N = VSnH =
4π

3
R3

SnH 1.0

tS =
N

Q
=

4πR3
SnH

3Q
1.0

=
1

αnH

=
1

10−19 × 108

= 1011 s

≈ 3000 yr 2.0

For typical nebular densities, the main-sequence lifetime of LBV stars is much
longer than this ionization time, and hence our assumption of a stationary
system is justified.
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(d) The mean electron thermal energy in a plasma of temperature Te = 104K is

Ee ≈ kBTe ≈ 1.4× 10−19 J ≈ 0.9 eV 2.0

The energy of a photon is

Eγ = hν ≈ 6.6× 10−24 J ≈ 4× 10−5 eV 1.0

As the energy of the radio photon is much much smaller than that of the
electron, the answer is “Yes”. 1.0

(e) As the plasma is nearly transparent, using the Rayleigh-Jeans law,

Bν =
2kBTeν

2

c2
1.0

Sν ∝ Bντν =
2kBTeν

2

c2
τν

Sν ∝ ν2 · ν−2.1

∴ Sν ∝ ν−0.1 3.0
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6 Occultation of a X-ray Source
Consider a satellite observing x-ray sources, while orbiting the Earth in the equatorial
plane with orbital radius r, and orbital time period P . Let us assume that this satellite
is pointed to one fixed direction in space for a given length of time. Take the radius of
the earth as R.

When the satellite moves ‘behind’ the earth, naturally, the x-ray source is ‘occulted’
and the measured x-ray flux from the source drops to zero. However, due to Earth’s
atmosphere, this drop is gradual. If the line of sight of the source passes through the
atmosphere, the attenuation depends on the air-mass (i.e. length of air column) along
the line of sight.

(a) (1 point) Let us assume that pointing towards a fixed source at 0° declination. We
consider that the source is occulted when 50% of the light coming from the source gets
attenuated due to the atmosphere. Let us say that this happens when the minimum
height of the line of sight from the surface of the Earth is h.
If θ0 is the angle between the direction to the source and the direction to the Earth,
as measured from the spacecraft, find an expression for θ0.

(b) (4 points) The time duration ∆t between the source getting attenuated from 90% of
pre-occultation flux to 10% is defined as the ‘occultation time’ for the source. Assume
the flux attenuates to 90% when the minimum height of the line of sight (h+0.5∆h)
and similarly the flux attenuates to 10% at (h− 0.5∆h), where ∆h ≪ R.
Find the expression for ∆t in terms of r, P , ∆h and θ0.

(c) (15 points) If the satellite was pointing towards a source at declination β instead
(β not too large), what will be the expression for ∆t?

Note:
If the satellite was not in the equatorial plane, then the problem could have been simply
rephrased by assuming the satellite’s orbital plane to be the equatorial plane. In that
case, β becomes ‘relative declination’.

Solution

(a) The solution for first part is obvious from the figure below.

Earth

satellite source

r
R + h

θ0
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sin θ0 =

(
R + h

r

)
∴ θ0 = sin−1

(
R + h

r

)
1.0

(b) Let us say the satelite has to move in the orbit by ∆θ/2 for 0.5∆h/2 change
in height.

sin

(
θ0 ±

∆θ

2

)
=

(
R + h± 0.5∆h

r

)
1.0

sin

(
θ0 +

∆θ

2

)
− sin

(
θ0 −

∆θ

2

)
=

(
∆h

r

)
∴ 2 cos θ0 sin

(
∆θ

2

)
=

(
∆h

r

)
2× ∆θ

2
cos θ0 =

(
∆h

r

)
1.0

∆θ =

(
∆h

r cos θ0

)
=

2π∆t

P
1.0

∴ ∆t =

(
P∆h

2πr cos θ0

)
1.0

(c) Let θ be the new angle for 50% attenuation. In the diagram below, The line
of sight from the satelite (S) to the source is at minimum distance from the
centre of the earth (C) at point A. The points S, C and B are in the equatorial
plane with line BA normal to the equatorial plane. One also realises that the
line BS is normal to the plane defined by A, B and C. 3.0

S (satellite)

source

a

b

R + h

r

c

θ
β

A

B

C (Earth Centre)
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a = r cos θ

c = r sin θ

b = a tan β

(R + h)2 = b2 + c2

= (r cos θ tan β)2 + (r sin θ)2 3.0

∴ (R + h)2

r2
= cos2 θ tan2 β + sin2 θ

= (1− sin2 θ) tan2 β + sin2 θ

= tan2 β + sin2 θ(1− tan2 β)

∴ sin2 θ =

(
(R + h)2

r2
− tan2 β

)(
1

(1− tan2 β)

)
1.0

Let us say tan2 β = k

∴ sin θ =

√(
(R + h)2

r2
− k

)(
1

(1− k)

)
Using similar analysis as the previous part,

∆θ cos θ =

√
1

(1− k)


√√√√((R + h+ ∆h

2
)2

r2
− k

)
−

√√√√((R + h− ∆h
2
)2

r2
− k

) 2.0

=

√
1

(1− k)

(
∆h(R + h)

r2

)(
(R + h)2

r2
− k

)−0.5

2.0

=

√
1

(1− k)

(
(R + h)2

r2
− k

)(
∆h

r
× (R + h)

r

)((
(R + h)

r

)2

− k

)−1

2.0

= sin θ

(
∆h sin θ0

r

)(
sin2 θ0 − tan2 β

)−1

∴ ∆t =

(
P∆h tan θ

2πr

)(
sin θ0

sin2 θ0 − tan2 β

)
1.0
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7 Radiant of a Meteor Shower
A stargazer in Chiayi, Chinese Taipei (23.5°N, 120.4°E, GMT+8) saw two meteors streak-
ing through the sky at 21:00 (Chinese Taipei time) on 25th September 2020. One of the
meteors appeared at horizon exactly due west and streaked to a point at 15° altitude
directly above the northern horizon. The second meteor originated at an altitude of 23.5°
and an azimuth of 210° and ended at an altitude of 75° and an azimuth of 255°.

(a) (6 points) What is the Local Sidereal Time (LST) at the time of observation?

(b) (16 points) Find the alt-az coordinates of the apparent radiant of the two meteors.

(c) (6 points) Find the equatorial coordinates of the apparent radiant.

(d) (2 points) Which of the following constellations is closest to the radiant?
Crux / Dorado / Pavo / Tucana / Triangulum Australes
(choose one and write the same name in the answer box)

Notes:

• Azimuths are measured from the North (0°) towards the East.

• The Greenwich Sidereal Time (GST) at 00:00 UT on 1st January 2020 is 6h 40m

30s.

Solution

(a) Step 1: Determine the GST at the time of observation.
Let us denote the GST on at 00:00 UT on 1st January 2020 as GST0.
Total 268 days have elapsed since start of the year till 0h UT on 25 September.

1.0
At 21:00 for GMT+8 timezone, UT will be 21h-8h = 13h

Hence,

GST = GST0 +∆t

= 6h40m30s +
268× 24

365.2422
+

13× 24

23.9344
≈ 6h40m30s + 17h36m36s + 13h2m8s

= 37h19m14s = 13h19m14s 3.0

As longitude of observer is 120.4°, the LST of observation is,

LST = GST + 24h × 120.4°
360°

= 13h19m14s + 8h1m36s

= 21h20m50s 2.0

(b) For horizontal coordinates
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zenith

A′
i, a

′
i

Radiant (A,a)

Ai, ai

A′
i − AiAi − A

θ

1.0

The spherical triangle has the radiant, initial position and final position of
the i-th meteor to be (A, a), (Ai, ai) and (A′

i, a
′
i), where a and A denotes the

altitude and azimuth respectively.
Using the four-parts (cotangent) equation on the left and right triangles, we
have, for both meteors:

cos(90− ai) cos(A
′
i − Ai) = sin(90− ai) cot(90− a′i)− sin(A′

i − Ai) cot θ

∴ sin ai cos(A
′
i − Ai) = cos ai tan a

′
i − sin(A′

i − Ai) cot θ

Similarly,
cos(90− ai) cos(Ai − A) = sin(90− ai) cot(90− a)

− sin(Ai − A) cot(180− θ)

∴ sin ai cos(Ai − A) = cos ai tan a+ sin(Ai − A) cot θ 2.0
We can then eliminate cot θ to yield:

sin ai cos(Ai − A)

sin(Ai − A)
− cos ai tan a

sin(Ai − A)
=

cos ai tan a
′
i

sin(A′
i − Ai)

− sin ai cos(A
′
i − Ai)

sin(A′
i − Ai)

= cot θ

multiplying the whole equation by sin(A′
i − Ai) sin(Ai − A)

cos ai
tan ai cos(Ai − A) sin(A′

i − A) tan a′i sin(Ai − A)

− tan a sin(A′
i − A) = − tan ai cos(A

′
i − Ai) sin(Ai − A)

tan ai sin[(A
′
i − Ai) + (Ai − A)] = tan a′i sin(Ai − A) + tan a sin(A′

i − Ai)

tan ai sin(A
′
i − A) = tan a′i sin(Ai − A) + tan a sin(A′

i − Ai) 3.0

Plugging in i = 1, 2, and eliminating tan a by division, we have

tan a1 sin(A
′
1 − A)− tan a′1 sin(A1 − A)

tan a2 sin(A′
2 − A)− tan a′2 sin(A2 − A)

=
sin(A′

1 − A1)

sin(A′
2 − A2)

def
= k

where k is the RHS defined above (which is a known value). Expanding the
equation above and dividing by cosA, gathering terms of tanA, we get

tanA =
tan a1 sinA

′
1 − tan a′1 sinA1 − k tan a2 sinA

′
2 + k tan a′2 sinA2

tan a1 cosA′
1 − tan a′1 cosA1 − k tan a2 cosA′

2 + k tan a′2 cosA2

2.0

and tan a =
tan a1 sin(A

′
1 − A)− tan a′1 sin(A1 − A)

sin(A′
1 − A1)
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Plugging in the respective values from the question,

A1 = 0° a1 = 15°
A′

1 = 90° a′1 = 0°
A2 = 210° a2 = 23.5°
A′

2 = 255° a′2 = 75°

We get

k =
sin(A′

1 − A1)

sin(A′
2 − A2)

=
sin 90°
sin 15°

k = 1.414

tan a1 sinA
′
1 = 0.268

tan a′1 sinA1 = 0

k tan a2 sinA
′
2 = −0.594

k tan a′2 sinA2 = −2.639

tan a1 cosA
′
1 = 0

tan a′1 cosA1 = 0

k tan a2 cosA
′
2 = −0.159

k tan a′2 cosA2 = −4.571

∴ tanA =
0.268− 0 + 0.594− 2.639

0− 0 + 0.159− 4.571
= 0.403

∴ A = 21.94°
OR A = 201.94° 4.0

However, the student should realize that for A = 21.94°, the radiant is in the
path of the first meteor, which is unrealistic. Hence, it is more likely that the
azimuth takes the second value. 1.0
Plugging in for the altitude, we find the coordinate of the radiant to be

tan a1 sin(A
′
1 − A) = −0.249

tan a′1 sin(A1 − A) = 0

sin(A′
1 − A1) = 1

∴ tan a = (−0.2485− 0)/1 = −0.2485

a = −13.96° 2.0

As the meteor track origin and end points are rounded to integer degrees, the
horizontal coordinates of the radiant will be

(A, a) = (202°,−14°) 1.0
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Alternative solution
In the vector representation, let the starting and final locations of the meteroids
be u⃗i and v⃗i respectively. For the subsequent calculations, the vectors are most
conveniently represented in Cartesian coordinates. Letting the x-axis point
east, y-axis north, and z-axis towards the zenith, we have

u⃗ = (ux, uy, uz) = (cos a sinA, cos a cosA, sin a) (1)

for a generic vector u⃗ with azimuth A and altitude a. We can therefore compute

u⃗1 = (cos 15° sin 0°, cos 15° cos 0°, sin 15°) = (0, 0.9659, 0.2588) ,

u⃗2 = (cos 23.5° sin 210°, cos 23.5° cos 210°, sin 23.5°) = (−0.4585,−0.7942, 0.3988) ,

v⃗1 = (cos 0° sin 90°, cos 0° cos 90°, sin 0°) = (1, 0, 0) ,

v⃗2 = (cos 75° sin 255°, cos 75° cos 255°, sin 75°) = (−0.25,−0.0670, 0.9659) . 3.0

The meteors move along great arcs, and the two intersections of the great
arcs correspond to the two possible locations of the radiant. A great arc is
uniquely defined by its normal vector, denote it with n⃗i. The normal vector
is conveniently calculated through the cross product of the starting and final
position, n⃗i = u⃗i× v⃗i. The cross product can be calculated via the determinant
of the following matrix

u⃗i × v⃗i =

∣∣∣∣∣∣
i j k
uix uiy uiz

vix viy viz

∣∣∣∣∣∣ = (uiyviz − uizviy, uizvix − uixviz, uixviy − uiyvix). 4.0

This yields

n⃗1 = (0, 0.2588,−0.9659) ,

n⃗2 = (−0.7404, 0.3432,−0.1678) . 1.0

Every point on the great circle i is perpendicular to n⃗i. This means that the
intersections of the two great circles are perpendicular to both n⃗1 and n⃗2. The
vector parallel to the intersections can therefore be calculated by the cross
product of n⃗1 and n⃗2. Let the vector corresponding to the intersection be m⃗.
Then

m⃗ = n⃗1 × n⃗2 3.0
= (0.3626, 0.9002, 0.2412) . 1.0

Now all that’s left is to calculate the azimuth and altitude corresponding to
m⃗. Note that −m⃗ is also an intersection. The equations for the altitude and
azimuth can be reverse-engineered from equation (1):

a = arctan

(
z√

x2 + y2

)
,

A = arctan

(
x

y

)
. 1.0

20



One has to take care that the arctans are signed. This gives the final values of
the intersection points to be

(A, a) = (22°, 14°) and (A, a) = (202°,−14°). 2.0

As in the first solution, the A = 22° solution can be eliminated due to it being
on the path of the first meteor This gives the final answer of

(A, a) = (202°,−14°) 1.0

(c) Now, it is easy to convert the horizontal coordinates of the radiant to
equatorial coordinates.

O

P

Z

N S
W

E

J

(9
0−

ϕ)

(90− δ)

(90−
a)

360− A

H

1.0

Using the cosine rule:

sin δ = sinϕ sin a+ cosϕ cos a cosA

= sin(23.5°) sin(−13.4°) + cos(23.5°) cos(−13.96°) cos(201.94°)
= −0.9217

∴ δ = −67.2° 2.0

cosH =
sin a− sin δ sinϕ

cosϕ cos δ

=
sin(−13.4°)− sin(−67.2°) sin(23.5°)

cos(23.5°) cos(−67.2°) = 0.3551

∴ H = 4h36m47s 1.5

From the relationship between the LST and the Hour Angle (H = LST − α),
we get the equatorial coordinates of the radiant to be

α = 21h20m50s − 4h36m47s

= 16h44m3s 1.5

Thus, the equatorial coordinates of the radiant are,

(α, δ) = (16h44m,−67.2°)

(d) Triangulum Australes 2.0
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8 Jupiter’s Great Red Spot

In the following problem the fluid mechanics of Jupiter’s Great Red Spot (GRS) is
studied based on the velocity field data. The diagram on the next page shows a map of
relative velocity for GRS and the surrounding region. The arrows are oriented and scaled
as per the directions and magnitudes of winds at different points.
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Due to the combined effects of gravity and rotation, Jupiter is slightly flattened at its
poles. The equation of a spheroid approximating for the shape of Jupiter can be stated
as:

x2 + y2

R2
e

+
z2

R2
p

= 1,

where Re = 7.15× 107m is the equatorial radius of Jupiter, and Rp = 6.69× 107m the
polar radius. The radii of curvature of this spheroid in any direction can be calculated
by the following equations (ϵ = Re

Rp
):

r(ϕ) = Re

(
1 + ϵ−2 tan2 ϕ

)−1/2

R(ϕ) = Reϵ
−2

(
r(ϕ)

Re cosϕ

)3

where r and R are the zonal (aka in the zone of a particular latitude) and meridional (aka
longitudinal) radii of curvature, respectively, as a function of planetographic latitude ϕ.
The sidereal rotation period of Jupiter is P = 3.57× 104 s.
(a) (4 points) Calculate the zonal and meridional radii values (r and R respectively) at

the location of the centre of the GRS.

(b) (5 points) Estimate the eccentricity of the GRS.

(c) (6 points) ’Vorticity’ at any point is a measure of local spinning of the fluid as
measured by an observer situated in the reference frame of the fluid. Mathematically,
it is calculated as ’curl’ (vector derivative product) of the velocity field. In this case,
the average relative vorticity may be estimated by the equation:

ξ =
VwLGRS

AGRS

where Vw is the maximum value of winds as per the velocity field, LGRS is the length
of the circumference of the GRS and AGRS is the area of the GRS.
Estimate average relative vorticity of the GRS.
Hint: The circumference of an ellipse is well approximated by an average of circum-
ferences of the corresponding auxiliary and minor circles.

(d) (2 points) Find the absolute vorticity ξa = (ξ + f) by adding the Coriolis parameter
f = 2Ω sinϕ

where Ω is the angular velocity of the Jupiter (due to axial rotation) and is the
appropriate latitude.

(e) (1 point) If the absolute vorticity has the same sign as the latitude, we call the
storm a ‘cyclonic storm’. If they have opposite signs, the system is ‘anticyclonic’. Is
the GRS cyclonic or anticyclonic?

(f) (12 points) Imagine that the GRS moves to another latitude ϕ1, where the absolute
vorticity changes the sign (changes from anti-cyclonic to cyclonic or vice versa).
Assuming minimum possible displacement of the GRS, at what value of ϕ1 do we
expect this change?
In your analysis, assume that the GRS at the new location would occupy the same
angular span in latitude, as well as have the same wind velocities and eccentricity as
the original.
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Solution

(a) From the figure, the centre of GRS lies at ϕ = −20.0°. 1.0

ϵ =
Re

Rp

=
7.15

6.69

= 1.069 1.0
r = r(−20°) = Re

(
1 + ϵ−2 tan2 ϕ

)−1/2

= 7.15× 107 ×
(
1 + (1.0688)−2 tan2(−20°)

)−1/2

r = 6.77× 107m 1.0

R = R(−20°) = Reϵ
−2

(
r(ϕ)

Re cosϕ

)3

= 7.15× 107 × (1.0688)−2

(
r(−20°)

7.15× 107 × cos (−20°)

)3

R = 6.40× 107m 1.0

(b) We use the figure to estimate size major and minor axis of the GRS and hence
estimate the eccentricity.

a = rθlong

= 6.77× 107 × 8.2° × π

180°
a = 9.69× 106m 2.0
b = Rθlat

= 6.40× 107 × 4.3° × π

180°
b = 4.80× 106m 2.0

eGRS =

√
1−

(
b

a

)2

=

√
1−

(
4.8

9.7

)2

eGRS ≈ 0.87 1.0

(c) The maximum value of wind velocity (Vw) is about 120m/s. 1.0

AGRS = πab 1.0

LGRS ≈ 2πa+ 2πb

2
= πa(1 +

√
1− e2) 2.0

∴ ξ =
VwLGRS

AGRS

=
Vwπa(1 +

√
1− e2)

πab

=
120× (1 +

√
1− 0.872)

4.8× 106

ξ ≈ 3.7× 10−5 s−1 2.0
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(d) The absolute vorticity will be given by

ξa = ξ + 2Ω sinϕ

= ξ +
2× 2× π sin−20°

P
= 3.7× 10−5 +

4π sin−20°
3.57× 104

= 3.7× 10−5 − 1.2× 10−4

ξa = −8.3× 10−5 2.0

(e) The GRS is a cyclonic system. 1.0

(f) For this, we have to write ξa as a function of ϕ and then find root of the function
closest to the current latitude.

ξa = 0 = ξ + 2Ω sinϕ 1.0

0 =
Vw(1 +

√
1− e2)

b
+ 2Ω sinϕ1

0 =
Vw(1 +

√
1− e2)

R1θlat
+ 2Ω sinϕ1

0 =
Vwϵ

2R2
e(1 +

√
1− e2) cos3 ϕ

θlatr3(ϕ1)
+ 2Ω sinϕ1

0 =
Vwϵ

2R2
e(1 +

√
1− e2) cos3 ϕ1

θlat(Re (1 + ϵ−2 tan2 ϕ1)
−1/2

)3
+ 2Ω sinϕ1 3.0

0 =

(
Vwϵ

2(1 +
√
1− e2)

θlatRe

)(
cosϕ1

√
1 + ϵ−2 tan2 ϕ1

)3
+ 2Ω sinϕ1

−3.520× 10−4 sinϕ1 = 3.81× 10−5 ×
(
1− (1− ϵ−2) sin2 ϕ1

)3/2
35.22 sin2 ϕ1 = 3.812 ×

(
1− (1− ϵ−2) sin2 ϕ1

)3
Let us define sin2 ϕ1 = x

∴ x = 0.01172 (1− 0.1245x)3 4.0

Iterating over x, with starting value as x0 = sin2(−20°) = 0.11698

x0 x1

0.11698 0.01121
0.01121 0.01167
0.01167 0.01167 2.0

Thus,

ϕ1 = − sin−1(
√
0.01167)

ϕ1 = −6.2° ≈ −6° 2.0

An alternative solution is to try to find this using the plotting method, but one
needs to make sure the result is obtained to the equivalent precision.
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